The effect of air pollution on the transcriptomics of the immune response to respiratory infection

Abstract Combustion related particulate matter air pollution (PM) is associated with an increased risk of respiratory infections in adults. The exact mechanism underlying this association has not been determined. We hypothesized that increased concentrations of combustion related PM would result in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel P. Croft, David S. Burton, David J. Nagel, Soumyaroop Bhattacharya, Ann R. Falsey, Steve N. Georas, Philip K. Hopke, Carl J. Johnston, R. Matthew Kottmann, Augusto A. Litonjua, Thomas J. Mariani, David Q. Rich, Kelly Thevenet-Morrison, Sally W. Thurston, Mark J. Utell, Matthew N. McCall
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f504fe72eea34f34b71bf81db1a6ebe3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Combustion related particulate matter air pollution (PM) is associated with an increased risk of respiratory infections in adults. The exact mechanism underlying this association has not been determined. We hypothesized that increased concentrations of combustion related PM would result in dysregulation of the innate immune system. This epidemiological study includes 111 adult patients hospitalized with respiratory infections who underwent transcriptional analysis of their peripheral blood. We examined the association between gene expression at the time of hospitalization and ambient measurements of particulate air pollutants in the 28 days prior to hospitalization. For each pollutant and time lag, gene-specific linear models adjusting for infection type were fit using LIMMA (Linear Models For Microarray Data), and pathway/gene set analyses were performed using the CAMERA (Correlation Adjusted Mean Rank) program. Comparing patients with viral and/or bacterial infection, the expression patterns associated with air pollution exposure differed. Adjusting for the type of infection, increased concentrations of Delta-C (a marker of biomass smoke) and other PM were associated with upregulation of iron homeostasis and protein folding. Increased concentrations of black carbon (BC) were associated with upregulation of viral related gene pathways and downregulation of pathways related to antigen presentation. The pollutant/pathway associations differed by lag time and by type of infection. This study suggests that the effect of air pollution on the pathogenesis of respiratory infection may be pollutant, timing, and infection specific.