Statistical Enrichment Analysis of Samples: A General-Purpose Tool to Annotate Metadata Neighborhoods of Biological Samples
Unsupervised learning techniques, such as clustering and embedding, have been increasingly popular to cluster biomedical samples from high-dimensional biomedical data. Extracting clinical data or sample meta-data shared in common among biomedical samples of a given biological condition remains a maj...
Guardado en:
Autores principales: | Thanh M. Nguyen, Samuel Bharti, Zongliang Yue, Christopher D. Willey, Jake Y. Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f51a8838d56f47ff861e6f335e441693 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Corrigendum: Statistical Enrichment Analysis of Samples: A General-Purpose Tool to Annotate Metadata Neighborhoods of Biological Samples
por: Thanh M. Nguyen, et al.
Publicado: (2021) -
Dual Inhibition of Bcl-2/Bcl-xL and XPO1 is synthetically lethal in glioblastoma model systems
por: Enyuan Shang, et al.
Publicado: (2018) -
A novel PDX modeling strategy and its application in metabolomics study for malignant pleural mesothelioma
por: Zhongjian Chen, et al.
Publicado: (2021) -
Therapeutic Effects of Dietary Soybean Genistein on Triple-Negative Breast Cancer via Regulation of Epigenetic Mechanisms
por: Manvi Sharma, et al.
Publicado: (2021) -
Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential
por: Yu Y, et al.
Publicado: (2017)