Simplifying functional network representation and interpretation through causality clustering
Abstract Functional networks, i.e. networks representing the interactions between the elements of a complex system and reconstructed from the observed elements’ dynamics, are becoming a fundamental tool to unravel the structures created by the movement of information in systems like the human brain....
Guardado en:
Autor principal: | Massimiliano Zanin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f51d358322cc4051a8b4c04953a2ec79 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A graph neural network framework for causal inference in brain networks
por: S. Wein, et al.
Publicado: (2021) -
High accuracy capillary network representation in digital rock reveals permeability scaling functions
por: Rodrigo F. Neumann, et al.
Publicado: (2021) -
Plasticity in the macromolecular-scale causal networks of cell migration.
por: John G Lock, et al.
Publicado: (2014) -
Functional clustering of periodic transcriptional profiles through ARMA(p,q).
por: Ning Li, et al.
Publicado: (2010) -
Exploring function prediction in protein interaction networks via clustering methods.
por: Kire Trivodaliev, et al.
Publicado: (2014)