Simplifying functional network representation and interpretation through causality clustering
Abstract Functional networks, i.e. networks representing the interactions between the elements of a complex system and reconstructed from the observed elements’ dynamics, are becoming a fundamental tool to unravel the structures created by the movement of information in systems like the human brain....
Enregistré dans:
Auteur principal: | Massimiliano Zanin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f51d358322cc4051a8b4c04953a2ec79 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A graph neural network framework for causal inference in brain networks
par: S. Wein, et autres
Publié: (2021) -
High accuracy capillary network representation in digital rock reveals permeability scaling functions
par: Rodrigo F. Neumann, et autres
Publié: (2021) -
Plasticity in the macromolecular-scale causal networks of cell migration.
par: John G Lock, et autres
Publié: (2014) -
Functional clustering of periodic transcriptional profiles through ARMA(p,q).
par: Ning Li, et autres
Publié: (2010) -
Exploring function prediction in protein interaction networks via clustering methods.
par: Kire Trivodaliev, et autres
Publié: (2014)