Statistical uncertainty quantification to augment clinical decision support: a first implementation in sleep medicine
Abstract Machine learning has the potential to change the practice of medicine, particularly in areas that require pattern recognition (e.g. radiology). Although automated classification is unlikely to be perfect, few modern machine learning tools have the ability to assess their own classification...
Guardado en:
Autores principales: | Dae Y. Kang, Pamela N. DeYoung, Justin Tantiongloc, Todd P. Coleman, Robert L. Owens |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f525a8c418a8454896bb376251306434 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The future of sleep health: a data-driven revolution in sleep science and medicine
por: Ignacio Perez-Pozuelo, et al.
Publicado: (2020) -
Second opinion needed: communicating uncertainty in medical machine learning
por: Benjamin Kompa, et al.
Publicado: (2021) -
U-Sleep: resilient high-frequency sleep staging
por: Mathias Perslev, et al.
Publicado: (2021) -
Efficient cellular annotation of histopathology slides with real-time AI augmentation
por: James A. Diao, et al.
Publicado: (2021) -
A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
por: Sercan Ö. Arık, et al.
Publicado: (2021)