Finite element model of circularly curved Timoshenko beam for in-plane vibration analysis
Curved beams are used so much in the arches and railway bridges and equipments for amusement parks. There are few reports about the curved beam with the effects of both the shear deformation and rotary inertias. In this paper, a new finite element model investigates to analyze In-Plane vibration of...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
University of Belgrade - Faculty of Mechanical Engineering, Belgrade
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f53e44425c96437a92fc1bd19e9b7600 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f53e44425c96437a92fc1bd19e9b7600 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f53e44425c96437a92fc1bd19e9b76002021-12-05T21:01:45ZFinite element model of circularly curved Timoshenko beam for in-plane vibration analysis1451-20922406-128X10.5937/fme2103615Nhttps://doaj.org/article/f53e44425c96437a92fc1bd19e9b76002021-01-01T00:00:00Zhttps://scindeks-clanci.ceon.rs/data/pdf/1451-2092/2021/1451-20922103615N.pdfhttps://doaj.org/toc/1451-2092https://doaj.org/toc/2406-128XCurved beams are used so much in the arches and railway bridges and equipments for amusement parks. There are few reports about the curved beam with the effects of both the shear deformation and rotary inertias. In this paper, a new finite element model investigates to analyze In-Plane vibration of a curved Timoshenko beam. The Stiffness and mass matrices of the curved beam element was obtained from the force-displacement relations and the kinetic energy equations, respectively. Assembly of the elemental property matrices is simple and without need to transformation matrix because of using the local polar coordinate system. The natural frequencies of curved Euler-Bernoulli beam with large thickness are not sufficiently accurate. In this case, using the curved Timoshenko beam element is necessary. Moreover, the influence of vibration absorber is discussed on the natural frequencies of the curved beam.Nadi AzinRaghebi MehdiUniversity of Belgrade - Faculty of Mechanical Engineering, Belgradearticlecurved timoshenko beamin-plane responsefinite element methodvibration absorberEngineering (General). Civil engineering (General)TA1-2040Mechanics of engineering. Applied mechanicsTA349-359ENFME Transactions, Vol 49, Iss 3, Pp 615-626 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
curved timoshenko beam in-plane response finite element method vibration absorber Engineering (General). Civil engineering (General) TA1-2040 Mechanics of engineering. Applied mechanics TA349-359 |
spellingShingle |
curved timoshenko beam in-plane response finite element method vibration absorber Engineering (General). Civil engineering (General) TA1-2040 Mechanics of engineering. Applied mechanics TA349-359 Nadi Azin Raghebi Mehdi Finite element model of circularly curved Timoshenko beam for in-plane vibration analysis |
description |
Curved beams are used so much in the arches and railway bridges and equipments for amusement parks. There are few reports about the curved beam with the effects of both the shear deformation and rotary inertias. In this paper, a new finite element model investigates to analyze In-Plane vibration of a curved Timoshenko beam. The Stiffness and mass matrices of the curved beam element was obtained from the force-displacement relations and the kinetic energy equations, respectively. Assembly of the elemental property matrices is simple and without need to transformation matrix because of using the local polar coordinate system. The natural frequencies of curved Euler-Bernoulli beam with large thickness are not sufficiently accurate. In this case, using the curved Timoshenko beam element is necessary. Moreover, the influence of vibration absorber is discussed on the natural frequencies of the curved beam. |
format |
article |
author |
Nadi Azin Raghebi Mehdi |
author_facet |
Nadi Azin Raghebi Mehdi |
author_sort |
Nadi Azin |
title |
Finite element model of circularly curved Timoshenko beam for in-plane vibration analysis |
title_short |
Finite element model of circularly curved Timoshenko beam for in-plane vibration analysis |
title_full |
Finite element model of circularly curved Timoshenko beam for in-plane vibration analysis |
title_fullStr |
Finite element model of circularly curved Timoshenko beam for in-plane vibration analysis |
title_full_unstemmed |
Finite element model of circularly curved Timoshenko beam for in-plane vibration analysis |
title_sort |
finite element model of circularly curved timoshenko beam for in-plane vibration analysis |
publisher |
University of Belgrade - Faculty of Mechanical Engineering, Belgrade |
publishDate |
2021 |
url |
https://doaj.org/article/f53e44425c96437a92fc1bd19e9b7600 |
work_keys_str_mv |
AT nadiazin finiteelementmodelofcircularlycurvedtimoshenkobeamforinplanevibrationanalysis AT raghebimehdi finiteelementmodelofcircularlycurvedtimoshenkobeamforinplanevibrationanalysis |
_version_ |
1718371040518733824 |