Automated discovery of a robust interatomic potential for aluminum

The accuracy of a machine-learned potential is limited by the quality and diversity of the training dataset. Here the authors propose an active learning approach to automatically construct general purpose machine-learning potentials here demonstrated for the aluminum case.

Guardado en:
Detalles Bibliográficos
Autores principales: Justin S. Smith, Benjamin Nebgen, Nithin Mathew, Jie Chen, Nicholas Lubbers, Leonid Burakovsky, Sergei Tretiak, Hai Ah Nam, Timothy Germann, Saryu Fensin, Kipton Barros
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f563b56affa04410a543a78699a94661
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f563b56affa04410a543a78699a94661
record_format dspace
spelling oai:doaj.org-article:f563b56affa04410a543a78699a946612021-12-02T16:23:13ZAutomated discovery of a robust interatomic potential for aluminum10.1038/s41467-021-21376-02041-1723https://doaj.org/article/f563b56affa04410a543a78699a946612021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21376-0https://doaj.org/toc/2041-1723The accuracy of a machine-learned potential is limited by the quality and diversity of the training dataset. Here the authors propose an active learning approach to automatically construct general purpose machine-learning potentials here demonstrated for the aluminum case.Justin S. SmithBenjamin NebgenNithin MathewJie ChenNicholas LubbersLeonid BurakovskySergei TretiakHai Ah NamTimothy GermannSaryu FensinKipton BarrosNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Justin S. Smith
Benjamin Nebgen
Nithin Mathew
Jie Chen
Nicholas Lubbers
Leonid Burakovsky
Sergei Tretiak
Hai Ah Nam
Timothy Germann
Saryu Fensin
Kipton Barros
Automated discovery of a robust interatomic potential for aluminum
description The accuracy of a machine-learned potential is limited by the quality and diversity of the training dataset. Here the authors propose an active learning approach to automatically construct general purpose machine-learning potentials here demonstrated for the aluminum case.
format article
author Justin S. Smith
Benjamin Nebgen
Nithin Mathew
Jie Chen
Nicholas Lubbers
Leonid Burakovsky
Sergei Tretiak
Hai Ah Nam
Timothy Germann
Saryu Fensin
Kipton Barros
author_facet Justin S. Smith
Benjamin Nebgen
Nithin Mathew
Jie Chen
Nicholas Lubbers
Leonid Burakovsky
Sergei Tretiak
Hai Ah Nam
Timothy Germann
Saryu Fensin
Kipton Barros
author_sort Justin S. Smith
title Automated discovery of a robust interatomic potential for aluminum
title_short Automated discovery of a robust interatomic potential for aluminum
title_full Automated discovery of a robust interatomic potential for aluminum
title_fullStr Automated discovery of a robust interatomic potential for aluminum
title_full_unstemmed Automated discovery of a robust interatomic potential for aluminum
title_sort automated discovery of a robust interatomic potential for aluminum
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f563b56affa04410a543a78699a94661
work_keys_str_mv AT justinssmith automateddiscoveryofarobustinteratomicpotentialforaluminum
AT benjaminnebgen automateddiscoveryofarobustinteratomicpotentialforaluminum
AT nithinmathew automateddiscoveryofarobustinteratomicpotentialforaluminum
AT jiechen automateddiscoveryofarobustinteratomicpotentialforaluminum
AT nicholaslubbers automateddiscoveryofarobustinteratomicpotentialforaluminum
AT leonidburakovsky automateddiscoveryofarobustinteratomicpotentialforaluminum
AT sergeitretiak automateddiscoveryofarobustinteratomicpotentialforaluminum
AT haiahnam automateddiscoveryofarobustinteratomicpotentialforaluminum
AT timothygermann automateddiscoveryofarobustinteratomicpotentialforaluminum
AT saryufensin automateddiscoveryofarobustinteratomicpotentialforaluminum
AT kiptonbarros automateddiscoveryofarobustinteratomicpotentialforaluminum
_version_ 1718384208773120000