Automated discovery of a robust interatomic potential for aluminum
The accuracy of a machine-learned potential is limited by the quality and diversity of the training dataset. Here the authors propose an active learning approach to automatically construct general purpose machine-learning potentials here demonstrated for the aluminum case.
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f563b56affa04410a543a78699a94661 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f563b56affa04410a543a78699a94661 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f563b56affa04410a543a78699a946612021-12-02T16:23:13ZAutomated discovery of a robust interatomic potential for aluminum10.1038/s41467-021-21376-02041-1723https://doaj.org/article/f563b56affa04410a543a78699a946612021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21376-0https://doaj.org/toc/2041-1723The accuracy of a machine-learned potential is limited by the quality and diversity of the training dataset. Here the authors propose an active learning approach to automatically construct general purpose machine-learning potentials here demonstrated for the aluminum case.Justin S. SmithBenjamin NebgenNithin MathewJie ChenNicholas LubbersLeonid BurakovskySergei TretiakHai Ah NamTimothy GermannSaryu FensinKipton BarrosNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Justin S. Smith Benjamin Nebgen Nithin Mathew Jie Chen Nicholas Lubbers Leonid Burakovsky Sergei Tretiak Hai Ah Nam Timothy Germann Saryu Fensin Kipton Barros Automated discovery of a robust interatomic potential for aluminum |
description |
The accuracy of a machine-learned potential is limited by the quality and diversity of the training dataset. Here the authors propose an active learning approach to automatically construct general purpose machine-learning potentials here demonstrated for the aluminum case. |
format |
article |
author |
Justin S. Smith Benjamin Nebgen Nithin Mathew Jie Chen Nicholas Lubbers Leonid Burakovsky Sergei Tretiak Hai Ah Nam Timothy Germann Saryu Fensin Kipton Barros |
author_facet |
Justin S. Smith Benjamin Nebgen Nithin Mathew Jie Chen Nicholas Lubbers Leonid Burakovsky Sergei Tretiak Hai Ah Nam Timothy Germann Saryu Fensin Kipton Barros |
author_sort |
Justin S. Smith |
title |
Automated discovery of a robust interatomic potential for aluminum |
title_short |
Automated discovery of a robust interatomic potential for aluminum |
title_full |
Automated discovery of a robust interatomic potential for aluminum |
title_fullStr |
Automated discovery of a robust interatomic potential for aluminum |
title_full_unstemmed |
Automated discovery of a robust interatomic potential for aluminum |
title_sort |
automated discovery of a robust interatomic potential for aluminum |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f563b56affa04410a543a78699a94661 |
work_keys_str_mv |
AT justinssmith automateddiscoveryofarobustinteratomicpotentialforaluminum AT benjaminnebgen automateddiscoveryofarobustinteratomicpotentialforaluminum AT nithinmathew automateddiscoveryofarobustinteratomicpotentialforaluminum AT jiechen automateddiscoveryofarobustinteratomicpotentialforaluminum AT nicholaslubbers automateddiscoveryofarobustinteratomicpotentialforaluminum AT leonidburakovsky automateddiscoveryofarobustinteratomicpotentialforaluminum AT sergeitretiak automateddiscoveryofarobustinteratomicpotentialforaluminum AT haiahnam automateddiscoveryofarobustinteratomicpotentialforaluminum AT timothygermann automateddiscoveryofarobustinteratomicpotentialforaluminum AT saryufensin automateddiscoveryofarobustinteratomicpotentialforaluminum AT kiptonbarros automateddiscoveryofarobustinteratomicpotentialforaluminum |
_version_ |
1718384208773120000 |