Anomaly Segmentation Based on Depth Image for Quality Inspection Processes in Tire Manufacturing

This paper introduces and implements an efficient training method for deep learning–based anomaly area detection in the depth image of a tire. A depth image of 16 bit integer size is used in various fields, such as manufacturing, industry, and medicine. In addition, the advent of the 4th Industrial...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dongbeom Ko, Sungjoo Kang, Hyunsuk Kim, Wongok Lee, Yousuk Bae, Jeongmin Park
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/f566b8493874411788ce35d4ea748587
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares