Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer

Background: Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear vi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhi Wei Tay, Prashant Chandrasekharan, Benjamin D. Fellows, Irati Rodrigo Arrizabalaga, Elaine Yu, Malini Olivo, Steven M. Conolly
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/f567e5ebee1c496c8386b691cec211ff
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Background: Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear visualization of cancer with image characteristics similar to PET or SPECT, but using radiation-free magnetic nanoparticles instead, with infinite-duration reporter persistence in vivo. MPI for cancer imaging: demonstrated months of quantitative imaging of the cancer-related immune response with in situ SPION-labelling of immune cells (e.g., neutrophils, CAR T-cells). Because MPI suffers absolutely no susceptibility artifacts in the lung, immuno-MPI could soon provide completely noninvasive early-stage diagnosis and treatment monitoring of lung cancers. MPI for magnetic steering: MPI gradients are ~150 × stronger than MRI, enabling remote magnetic steering of magneto-aerosol, nanoparticles, and catheter tips, enhancing therapeutic delivery by magnetic means. MPI for precision therapy: gradients enable focusing of magnetic hyperthermia and magnetic-actuated drug release with up to 2 mm precision. The extent of drug release from the magnetic nanocarrier can be quantitatively monitored by MPI of SPION’s MPS spectral changes within the nanocarrier. Conclusion: MPI is a promising new magnetic modality spanning cancer imaging to guided-therapy.