A hierarchical expert-guided machine learning framework for clinical decision support systems: an application to traumatic brain injury prognostication
Abstract Prognosis of the long-term functional outcome of traumatic brain injury is essential for personalized management of that injury. Nonetheless, accurate prediction remains unavailable. Although machine learning has shown promise in many fields, including medical diagnosis and prognosis, such...
Guardado en:
Autores principales: | Negar Farzaneh, Craig A. Williamson, Jonathan Gryak, Kayvan Najarian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f57748af49dd4d1aa98ce4ff36c1c89a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Actionable health app evaluation: translating expert frameworks into objective metrics
por: Sarah Lagan, et al.
Publicado: (2020) -
Evaluation framework to guide implementation of AI systems into healthcare settings
por: Enrico Coiera, et al.
Publicado: (2021) -
A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis
por: Yongli Xu, et al.
Publicado: (2021) -
Validation of parsimonious prognostic models for patients infected with COVID-19
por: Nicole M Adler, et al.
Publicado: (2021) -
Fine-Tuning Word Embeddings for Hierarchical Representation of Data Using a Corpus and a Knowledge Base for Various Machine Learning Applications
por: Mohammed Alsuhaibani, et al.
Publicado: (2021)