A hierarchical expert-guided machine learning framework for clinical decision support systems: an application to traumatic brain injury prognostication
Abstract Prognosis of the long-term functional outcome of traumatic brain injury is essential for personalized management of that injury. Nonetheless, accurate prediction remains unavailable. Although machine learning has shown promise in many fields, including medical diagnosis and prognosis, such...
Enregistré dans:
Auteurs principaux: | Negar Farzaneh, Craig A. Williamson, Jonathan Gryak, Kayvan Najarian |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f57748af49dd4d1aa98ce4ff36c1c89a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Actionable health app evaluation: translating expert frameworks into objective metrics
par: Sarah Lagan, et autres
Publié: (2020) -
Evaluation framework to guide implementation of AI systems into healthcare settings
par: Enrico Coiera, et autres
Publié: (2021) -
A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis
par: Yongli Xu, et autres
Publié: (2021) -
Validation of parsimonious prognostic models for patients infected with COVID-19
par: Nicole M Adler, et autres
Publié: (2021) -
Fine-Tuning Word Embeddings for Hierarchical Representation of Data Using a Corpus and a Knowledge Base for Various Machine Learning Applications
par: Mohammed Alsuhaibani, et autres
Publié: (2021)