Influence of Bio-Coal Properties on Carbonization and Bio-Coke Reactivity
Coke corresponds to 2/3–3/4 of the reducing agents in BF, and by the partial replacement of coking coals with 5–10% of bio-coal, the fossil CO<sub>2</sub> emissions from the BF can be lowered by ~4–8%. Coking coal blends with 5% and 10% additions of bio-coals (pre-treated biomass) of dif...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f58410f638c2496499813d8e95a3fc4e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f58410f638c2496499813d8e95a3fc4e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f58410f638c2496499813d8e95a3fc4e2021-11-25T18:21:41ZInfluence of Bio-Coal Properties on Carbonization and Bio-Coke Reactivity10.3390/met111117522075-4701https://doaj.org/article/f58410f638c2496499813d8e95a3fc4e2021-10-01T00:00:00Zhttps://www.mdpi.com/2075-4701/11/11/1752https://doaj.org/toc/2075-4701Coke corresponds to 2/3–3/4 of the reducing agents in BF, and by the partial replacement of coking coals with 5–10% of bio-coal, the fossil CO<sub>2</sub> emissions from the BF can be lowered by ~4–8%. Coking coal blends with 5% and 10% additions of bio-coals (pre-treated biomass) of different origins and pre-treatment degrees were carbonized at laboratory scale and with a 5% bio-coal addition at technical scale, aiming to understand the impact on the bio-coal properties (ash amount and composition, volatile matter content) and the addition of bio-coke reactivity. A thermogravimetric analyzer (TGA) connected to a quadrupole mass spectroscope monitored the residual mass and off-gases during carbonization. To explore the effect of bio-coal addition on plasticity, optical dilatometer tests were conducted for coking coal blends with 5% and 10% bio-coal addition. The plasticity was lowered with increasing bio-coal addition, but pyrolyzed biomass had a less negative effect on the plasticity compared to torrefied biomasses with a high content of oxygen. The temperature for starting the gasification of coke was in general lowered to a greater extent for bio-cokes produced from coking coal blends containing bio-coals with higher contents of catalyzing oxides. There was no significant difference in the properties of laboratory and technical scale produced coke, in terms of reactivity as measured by TGA. Bio-coke produced with 5% of high temperature torrefied pelletized biomass showed a similar coke strength as reference coke after reaction.Asmaa A. El-TawilBo BjörkmanMaria LundgrenAstrid RoblesLena Sundqvist ÖkvistMDPI AGarticlebio-coalscarbonizationgasificationreactivitydilatationfluidityMining engineering. MetallurgyTN1-997ENMetals, Vol 11, Iss 1752, p 1752 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
bio-coals carbonization gasification reactivity dilatation fluidity Mining engineering. Metallurgy TN1-997 |
spellingShingle |
bio-coals carbonization gasification reactivity dilatation fluidity Mining engineering. Metallurgy TN1-997 Asmaa A. El-Tawil Bo Björkman Maria Lundgren Astrid Robles Lena Sundqvist Ökvist Influence of Bio-Coal Properties on Carbonization and Bio-Coke Reactivity |
description |
Coke corresponds to 2/3–3/4 of the reducing agents in BF, and by the partial replacement of coking coals with 5–10% of bio-coal, the fossil CO<sub>2</sub> emissions from the BF can be lowered by ~4–8%. Coking coal blends with 5% and 10% additions of bio-coals (pre-treated biomass) of different origins and pre-treatment degrees were carbonized at laboratory scale and with a 5% bio-coal addition at technical scale, aiming to understand the impact on the bio-coal properties (ash amount and composition, volatile matter content) and the addition of bio-coke reactivity. A thermogravimetric analyzer (TGA) connected to a quadrupole mass spectroscope monitored the residual mass and off-gases during carbonization. To explore the effect of bio-coal addition on plasticity, optical dilatometer tests were conducted for coking coal blends with 5% and 10% bio-coal addition. The plasticity was lowered with increasing bio-coal addition, but pyrolyzed biomass had a less negative effect on the plasticity compared to torrefied biomasses with a high content of oxygen. The temperature for starting the gasification of coke was in general lowered to a greater extent for bio-cokes produced from coking coal blends containing bio-coals with higher contents of catalyzing oxides. There was no significant difference in the properties of laboratory and technical scale produced coke, in terms of reactivity as measured by TGA. Bio-coke produced with 5% of high temperature torrefied pelletized biomass showed a similar coke strength as reference coke after reaction. |
format |
article |
author |
Asmaa A. El-Tawil Bo Björkman Maria Lundgren Astrid Robles Lena Sundqvist Ökvist |
author_facet |
Asmaa A. El-Tawil Bo Björkman Maria Lundgren Astrid Robles Lena Sundqvist Ökvist |
author_sort |
Asmaa A. El-Tawil |
title |
Influence of Bio-Coal Properties on Carbonization and Bio-Coke Reactivity |
title_short |
Influence of Bio-Coal Properties on Carbonization and Bio-Coke Reactivity |
title_full |
Influence of Bio-Coal Properties on Carbonization and Bio-Coke Reactivity |
title_fullStr |
Influence of Bio-Coal Properties on Carbonization and Bio-Coke Reactivity |
title_full_unstemmed |
Influence of Bio-Coal Properties on Carbonization and Bio-Coke Reactivity |
title_sort |
influence of bio-coal properties on carbonization and bio-coke reactivity |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/f58410f638c2496499813d8e95a3fc4e |
work_keys_str_mv |
AT asmaaaeltawil influenceofbiocoalpropertiesoncarbonizationandbiocokereactivity AT bobjorkman influenceofbiocoalpropertiesoncarbonizationandbiocokereactivity AT marialundgren influenceofbiocoalpropertiesoncarbonizationandbiocokereactivity AT astridrobles influenceofbiocoalpropertiesoncarbonizationandbiocokereactivity AT lenasundqvistokvist influenceofbiocoalpropertiesoncarbonizationandbiocokereactivity |
_version_ |
1718411295333548032 |