PerSort Facilitates Characterization and Elimination of Persister Subpopulation in Mycobacteria

ABSTRACT Mycobacterium tuberculosis (MTB) generates phenotypic diversity to persist and survive the harsh conditions encountered during infection. MTB avoids immune effectors and antibacterial killing by entering into distinct physiological states. The surviving cells, persisters, are a major barrie...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vivek Srinivas, Mario L. Arrieta-Ortiz, Amardeep Kaur, Eliza J. R. Peterson, Nitin S. Baliga
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://doaj.org/article/f5919ba2d5bc42b1ac69ed43c2af7584
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f5919ba2d5bc42b1ac69ed43c2af7584
record_format dspace
spelling oai:doaj.org-article:f5919ba2d5bc42b1ac69ed43c2af75842021-12-02T18:15:47ZPerSort Facilitates Characterization and Elimination of Persister Subpopulation in Mycobacteria10.1128/mSystems.01127-202379-5077https://doaj.org/article/f5919ba2d5bc42b1ac69ed43c2af75842020-12-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.01127-20https://doaj.org/toc/2379-5077ABSTRACT Mycobacterium tuberculosis (MTB) generates phenotypic diversity to persist and survive the harsh conditions encountered during infection. MTB avoids immune effectors and antibacterial killing by entering into distinct physiological states. The surviving cells, persisters, are a major barrier to the timely and relapse-free treatment of tuberculosis (TB). We present for the first time, PerSort, a method to isolate and characterize persisters in the absence of antibiotic or other pressure. We demonstrate the value of PerSort to isolate translationally dormant cells that preexisted in small numbers within Mycobacterium species cultures growing under optimal conditions but that dramatically increased in proportion under stress conditions. The translationally dormant subpopulation exhibited multidrug tolerance and regrowth properties consistent with those of persister cells. Furthermore, PerSort enabled single-cell transcriptional profiling that provided evidence that the translationally dormant persisters were generated through a variety of mechanisms, including vapC30, mazF, and relA/spoT overexpression. Finally, we demonstrate that notwithstanding the varied mechanisms by which the persister cells were generated, they converge on a similar low-oxygen metabolic state that was reversed through activation of respiration to rapidly eliminate persisters fostered under host-relevant stress conditions. We conclude that PerSort provides a new tool to study MTB persisters, enabling targeted strategies to improve and shorten the treatment of TB. IMPORTANCE Mycobacterium tuberculosis (MTB) persists and survives antibiotic treatments by generating phenotypically heterogeneous drug-tolerant subpopulations. The surviving cells, persisters, are a major barrier to the relapse-free treatment of tuberculosis (TB), which is already killing >1.8 million people every year and becoming deadlier with the emergence of multidrug-resistant strains. This study describes PerSort, a cell sorting method to isolate and characterize, without antibiotic treatment, translationally dormant persisters that preexist in small numbers within Mycobacterium cultures. Characterization of this subpopulation has discovered multiple mechanisms by which mycobacterial persisters emerge and unveiled the physiological basis for their dormant and multidrug-tolerant physiological state. This analysis has discovered that activating oxygen respiratory physiology using l-cysteine eliminates preexisting persister subpopulations, potentiating rapid antibiotic killing of mycobacteria under host-relevant stress. PerSort serves as a new tool to study MTB persisters for enabling targeted strategies to improve and shorten the treatment of TB.Vivek SrinivasMario L. Arrieta-OrtizAmardeep KaurEliza J. R. PetersonNitin S. BaligaAmerican Society for MicrobiologyarticleMycobacteriumphenotypic heterogeneitypersistersantibiotic tolerancenutrient starvationMicrobiologyQR1-502ENmSystems, Vol 5, Iss 6 (2020)
institution DOAJ
collection DOAJ
language EN
topic Mycobacterium
phenotypic heterogeneity
persisters
antibiotic tolerance
nutrient starvation
Microbiology
QR1-502
spellingShingle Mycobacterium
phenotypic heterogeneity
persisters
antibiotic tolerance
nutrient starvation
Microbiology
QR1-502
Vivek Srinivas
Mario L. Arrieta-Ortiz
Amardeep Kaur
Eliza J. R. Peterson
Nitin S. Baliga
PerSort Facilitates Characterization and Elimination of Persister Subpopulation in Mycobacteria
description ABSTRACT Mycobacterium tuberculosis (MTB) generates phenotypic diversity to persist and survive the harsh conditions encountered during infection. MTB avoids immune effectors and antibacterial killing by entering into distinct physiological states. The surviving cells, persisters, are a major barrier to the timely and relapse-free treatment of tuberculosis (TB). We present for the first time, PerSort, a method to isolate and characterize persisters in the absence of antibiotic or other pressure. We demonstrate the value of PerSort to isolate translationally dormant cells that preexisted in small numbers within Mycobacterium species cultures growing under optimal conditions but that dramatically increased in proportion under stress conditions. The translationally dormant subpopulation exhibited multidrug tolerance and regrowth properties consistent with those of persister cells. Furthermore, PerSort enabled single-cell transcriptional profiling that provided evidence that the translationally dormant persisters were generated through a variety of mechanisms, including vapC30, mazF, and relA/spoT overexpression. Finally, we demonstrate that notwithstanding the varied mechanisms by which the persister cells were generated, they converge on a similar low-oxygen metabolic state that was reversed through activation of respiration to rapidly eliminate persisters fostered under host-relevant stress conditions. We conclude that PerSort provides a new tool to study MTB persisters, enabling targeted strategies to improve and shorten the treatment of TB. IMPORTANCE Mycobacterium tuberculosis (MTB) persists and survives antibiotic treatments by generating phenotypically heterogeneous drug-tolerant subpopulations. The surviving cells, persisters, are a major barrier to the relapse-free treatment of tuberculosis (TB), which is already killing >1.8 million people every year and becoming deadlier with the emergence of multidrug-resistant strains. This study describes PerSort, a cell sorting method to isolate and characterize, without antibiotic treatment, translationally dormant persisters that preexist in small numbers within Mycobacterium cultures. Characterization of this subpopulation has discovered multiple mechanisms by which mycobacterial persisters emerge and unveiled the physiological basis for their dormant and multidrug-tolerant physiological state. This analysis has discovered that activating oxygen respiratory physiology using l-cysteine eliminates preexisting persister subpopulations, potentiating rapid antibiotic killing of mycobacteria under host-relevant stress. PerSort serves as a new tool to study MTB persisters for enabling targeted strategies to improve and shorten the treatment of TB.
format article
author Vivek Srinivas
Mario L. Arrieta-Ortiz
Amardeep Kaur
Eliza J. R. Peterson
Nitin S. Baliga
author_facet Vivek Srinivas
Mario L. Arrieta-Ortiz
Amardeep Kaur
Eliza J. R. Peterson
Nitin S. Baliga
author_sort Vivek Srinivas
title PerSort Facilitates Characterization and Elimination of Persister Subpopulation in Mycobacteria
title_short PerSort Facilitates Characterization and Elimination of Persister Subpopulation in Mycobacteria
title_full PerSort Facilitates Characterization and Elimination of Persister Subpopulation in Mycobacteria
title_fullStr PerSort Facilitates Characterization and Elimination of Persister Subpopulation in Mycobacteria
title_full_unstemmed PerSort Facilitates Characterization and Elimination of Persister Subpopulation in Mycobacteria
title_sort persort facilitates characterization and elimination of persister subpopulation in mycobacteria
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/f5919ba2d5bc42b1ac69ed43c2af7584
work_keys_str_mv AT viveksrinivas persortfacilitatescharacterizationandeliminationofpersistersubpopulationinmycobacteria
AT mariolarrietaortiz persortfacilitatescharacterizationandeliminationofpersistersubpopulationinmycobacteria
AT amardeepkaur persortfacilitatescharacterizationandeliminationofpersistersubpopulationinmycobacteria
AT elizajrpeterson persortfacilitatescharacterizationandeliminationofpersistersubpopulationinmycobacteria
AT nitinsbaliga persortfacilitatescharacterizationandeliminationofpersistersubpopulationinmycobacteria
_version_ 1718378370224357376