Multi-Hypothesis Topological Isomorphism Matching Method for Synthetic Aperture Radar Images with Large Geometric Distortion
The dramatic undulations of a mountainous terrain will introduce large geometric distortions in each Synthetic Aperture Radar (SAR) image with different look angles, resulting in a poor registration performance. To this end, this paper proposes a multi-hypothesis topological isomorphism matching met...
Guardado en:
Autores principales: | Runzhi Jiao, Qingsong Wang, Tao Lai, Haifeng Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f5926bbb33784ef594a077a484ba9ee3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Self-Supervised Despeckling Algorithm with an Enhanced U-Net for Synthetic Aperture Radar Images
por: Gang Zhang, et al.
Publicado: (2021) -
A Flexible Region of Interest Extraction Algorithm with Adaptive Threshold for 3-D Synthetic Aperture Radar Images
por: Liang Li, et al.
Publicado: (2021) -
Efficient Generation of Artificial Training DB for Ship Detection Using Satellite SAR Images
por: Seung-Jae Lee, et al.
Publicado: (2021) -
End-to-End SAR Deep Learning Imaging Method Based on Sparse Optimization
por: Siyuan Zhao, et al.
Publicado: (2021) -
A Novel Guided Anchor Siamese Network for Arbitrary Target-of-Interest Tracking in Video-SAR
por: Jinyu Bao, et al.
Publicado: (2021)