Personalized predictions of patient outcomes during and after hospitalization using artificial intelligence
Abstract Hospital systems, payers, and regulators have focused on reducing length of stay (LOS) and early readmission, with uncertain benefit. Interpretable machine learning (ML) may assist in transparently identifying the risk of important outcomes. We conducted a retrospective cohort study of hosp...
Guardado en:
Autores principales: | C. Beau Hilton, Alex Milinovich, Christina Felix, Nirav Vakharia, Timothy Crone, Chris Donovan, Andrew Proctor, Aziz Nazha |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f597209c04d945e28c2088d6d39041c2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Artificial intelligence for the diagnosis of heart failure
por: Dong-Ju Choi, et al.
Publicado: (2020) -
Patient apprehensions about the use of artificial intelligence in healthcare
por: Jordan P. Richardson, et al.
Publicado: (2021) -
Developing a delivery science for artificial intelligence in healthcare
por: Ron C. Li, et al.
Publicado: (2020) -
A short guide for medical professionals in the era of artificial intelligence
por: Bertalan Meskó, et al.
Publicado: (2020) -
Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare
por: Davide Cirillo, et al.
Publicado: (2020)