Personalized predictions of patient outcomes during and after hospitalization using artificial intelligence
Abstract Hospital systems, payers, and regulators have focused on reducing length of stay (LOS) and early readmission, with uncertain benefit. Interpretable machine learning (ML) may assist in transparently identifying the risk of important outcomes. We conducted a retrospective cohort study of hosp...
Enregistré dans:
Auteurs principaux: | C. Beau Hilton, Alex Milinovich, Christina Felix, Nirav Vakharia, Timothy Crone, Chris Donovan, Andrew Proctor, Aziz Nazha |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f597209c04d945e28c2088d6d39041c2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Artificial intelligence for the diagnosis of heart failure
par: Dong-Ju Choi, et autres
Publié: (2020) -
Patient apprehensions about the use of artificial intelligence in healthcare
par: Jordan P. Richardson, et autres
Publié: (2021) -
Developing a delivery science for artificial intelligence in healthcare
par: Ron C. Li, et autres
Publié: (2020) -
A short guide for medical professionals in the era of artificial intelligence
par: Bertalan Meskó, et autres
Publié: (2020) -
Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare
par: Davide Cirillo, et autres
Publié: (2020)