The Normalized Difference Vegetation Index and Angular Variation of Surface Spectral Polarized Reflectance Relationships: Improvements on Aerosol Remote Sensing Over Land
Abstract Surface polarized reflectance is related to its optical properties and observation geometry. It disturbs remote sensing of aerosol. In this study, we differentiated the polarized reflectance of a natural surface based on the normalized difference vegetation index and scattering angle, and t...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f59d739c61a24a0c9ed2cb55b6c4bd9b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f59d739c61a24a0c9ed2cb55b6c4bd9b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f59d739c61a24a0c9ed2cb55b6c4bd9b2021-11-30T22:55:32ZThe Normalized Difference Vegetation Index and Angular Variation of Surface Spectral Polarized Reflectance Relationships: Improvements on Aerosol Remote Sensing Over Land2333-508410.1029/2019EA000593https://doaj.org/article/f59d739c61a24a0c9ed2cb55b6c4bd9b2019-06-01T00:00:00Zhttps://doi.org/10.1029/2019EA000593https://doaj.org/toc/2333-5084Abstract Surface polarized reflectance is related to its optical properties and observation geometry. It disturbs remote sensing of aerosol. In this study, we differentiated the polarized reflectance of a natural surface based on the normalized difference vegetation index and scattering angle, and the interband correlation coefficients were generally higher than that without differentiation. The spectral relationship was determined based on normalized difference vegetation index and scattering angle and then employed for aerosol retrieval from polarization and anisotropy of reflectances for atmospheric sciences coupled with observations from a lidar measurements. The retrieved aerosol optical depths (AODs) were contrasted with Aerosol Robotic Network results. The correlation coefficient between the retrieved and Aerosol Robotic Network AODs increased from 0.723 to 0.836, and the root‐mean‐square error reduced from 0.348 to 0.245 after considering the differentiated relationship. Thus, the accuracy of the retrieved AOD values was improved.Han WangLeiku YangMeiru ZhaoWeibing DuPei LiuXiaobing SunAmerican Geophysical Union (AGU)articleaerosol optical depthremote sensingsurface polarized reflectanceAstronomyQB1-991GeologyQE1-996.5ENEarth and Space Science, Vol 6, Iss 6, Pp 982-989 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
aerosol optical depth remote sensing surface polarized reflectance Astronomy QB1-991 Geology QE1-996.5 |
spellingShingle |
aerosol optical depth remote sensing surface polarized reflectance Astronomy QB1-991 Geology QE1-996.5 Han Wang Leiku Yang Meiru Zhao Weibing Du Pei Liu Xiaobing Sun The Normalized Difference Vegetation Index and Angular Variation of Surface Spectral Polarized Reflectance Relationships: Improvements on Aerosol Remote Sensing Over Land |
description |
Abstract Surface polarized reflectance is related to its optical properties and observation geometry. It disturbs remote sensing of aerosol. In this study, we differentiated the polarized reflectance of a natural surface based on the normalized difference vegetation index and scattering angle, and the interband correlation coefficients were generally higher than that without differentiation. The spectral relationship was determined based on normalized difference vegetation index and scattering angle and then employed for aerosol retrieval from polarization and anisotropy of reflectances for atmospheric sciences coupled with observations from a lidar measurements. The retrieved aerosol optical depths (AODs) were contrasted with Aerosol Robotic Network results. The correlation coefficient between the retrieved and Aerosol Robotic Network AODs increased from 0.723 to 0.836, and the root‐mean‐square error reduced from 0.348 to 0.245 after considering the differentiated relationship. Thus, the accuracy of the retrieved AOD values was improved. |
format |
article |
author |
Han Wang Leiku Yang Meiru Zhao Weibing Du Pei Liu Xiaobing Sun |
author_facet |
Han Wang Leiku Yang Meiru Zhao Weibing Du Pei Liu Xiaobing Sun |
author_sort |
Han Wang |
title |
The Normalized Difference Vegetation Index and Angular Variation of Surface Spectral Polarized Reflectance Relationships: Improvements on Aerosol Remote Sensing Over Land |
title_short |
The Normalized Difference Vegetation Index and Angular Variation of Surface Spectral Polarized Reflectance Relationships: Improvements on Aerosol Remote Sensing Over Land |
title_full |
The Normalized Difference Vegetation Index and Angular Variation of Surface Spectral Polarized Reflectance Relationships: Improvements on Aerosol Remote Sensing Over Land |
title_fullStr |
The Normalized Difference Vegetation Index and Angular Variation of Surface Spectral Polarized Reflectance Relationships: Improvements on Aerosol Remote Sensing Over Land |
title_full_unstemmed |
The Normalized Difference Vegetation Index and Angular Variation of Surface Spectral Polarized Reflectance Relationships: Improvements on Aerosol Remote Sensing Over Land |
title_sort |
normalized difference vegetation index and angular variation of surface spectral polarized reflectance relationships: improvements on aerosol remote sensing over land |
publisher |
American Geophysical Union (AGU) |
publishDate |
2019 |
url |
https://doaj.org/article/f59d739c61a24a0c9ed2cb55b6c4bd9b |
work_keys_str_mv |
AT hanwang thenormalizeddifferencevegetationindexandangularvariationofsurfacespectralpolarizedreflectancerelationshipsimprovementsonaerosolremotesensingoverland AT leikuyang thenormalizeddifferencevegetationindexandangularvariationofsurfacespectralpolarizedreflectancerelationshipsimprovementsonaerosolremotesensingoverland AT meiruzhao thenormalizeddifferencevegetationindexandangularvariationofsurfacespectralpolarizedreflectancerelationshipsimprovementsonaerosolremotesensingoverland AT weibingdu thenormalizeddifferencevegetationindexandangularvariationofsurfacespectralpolarizedreflectancerelationshipsimprovementsonaerosolremotesensingoverland AT peiliu thenormalizeddifferencevegetationindexandangularvariationofsurfacespectralpolarizedreflectancerelationshipsimprovementsonaerosolremotesensingoverland AT xiaobingsun thenormalizeddifferencevegetationindexandangularvariationofsurfacespectralpolarizedreflectancerelationshipsimprovementsonaerosolremotesensingoverland AT hanwang normalizeddifferencevegetationindexandangularvariationofsurfacespectralpolarizedreflectancerelationshipsimprovementsonaerosolremotesensingoverland AT leikuyang normalizeddifferencevegetationindexandangularvariationofsurfacespectralpolarizedreflectancerelationshipsimprovementsonaerosolremotesensingoverland AT meiruzhao normalizeddifferencevegetationindexandangularvariationofsurfacespectralpolarizedreflectancerelationshipsimprovementsonaerosolremotesensingoverland AT weibingdu normalizeddifferencevegetationindexandangularvariationofsurfacespectralpolarizedreflectancerelationshipsimprovementsonaerosolremotesensingoverland AT peiliu normalizeddifferencevegetationindexandangularvariationofsurfacespectralpolarizedreflectancerelationshipsimprovementsonaerosolremotesensingoverland AT xiaobingsun normalizeddifferencevegetationindexandangularvariationofsurfacespectralpolarizedreflectancerelationshipsimprovementsonaerosolremotesensingoverland |
_version_ |
1718406237701275648 |