Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits

Hardware implementation of spiking neural networks holds promise for high energy efficient brain-inspired computing. Here, Prezioso et al. realize the detection of synchrony in a demo circuit composed of 20 metal-oxide memristor synapses connected to a leaky-integrate-and-fire silicon neuron.

Guardado en:
Detalles Bibliográficos
Autores principales: M. Prezioso, M. R. Mahmoodi, F. Merrikh Bayat, H. Nili, H. Kim, A. Vincent, D. B. Strukov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/f5a2989a3d83440c9f152432cf481ea8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Hardware implementation of spiking neural networks holds promise for high energy efficient brain-inspired computing. Here, Prezioso et al. realize the detection of synchrony in a demo circuit composed of 20 metal-oxide memristor synapses connected to a leaky-integrate-and-fire silicon neuron.