Mapping the glycosyltransferase fold landscape using interpretable deep learning

Glycosyltransferases (GT) are proteins that display extensive sequence and functional variation on a subset of 3D folds. Here, the authors use interpretable deep learning to predict 3D folds from sequence without the need for sequence alignment, which also enables the prediction of GTs with new fold...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rahil Taujale, Zhongliang Zhou, Wayland Yeung, Kelley W. Moremen, Sheng Li, Natarajan Kannan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f5c17c58d05e4400857aec9c85fdb18c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Glycosyltransferases (GT) are proteins that display extensive sequence and functional variation on a subset of 3D folds. Here, the authors use interpretable deep learning to predict 3D folds from sequence without the need for sequence alignment, which also enables the prediction of GTs with new folds.