Mapping the glycosyltransferase fold landscape using interpretable deep learning
Glycosyltransferases (GT) are proteins that display extensive sequence and functional variation on a subset of 3D folds. Here, the authors use interpretable deep learning to predict 3D folds from sequence without the need for sequence alignment, which also enables the prediction of GTs with new fold...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f5c17c58d05e4400857aec9c85fdb18c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f5c17c58d05e4400857aec9c85fdb18c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f5c17c58d05e4400857aec9c85fdb18c2021-12-02T19:16:47ZMapping the glycosyltransferase fold landscape using interpretable deep learning10.1038/s41467-021-25975-92041-1723https://doaj.org/article/f5c17c58d05e4400857aec9c85fdb18c2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25975-9https://doaj.org/toc/2041-1723Glycosyltransferases (GT) are proteins that display extensive sequence and functional variation on a subset of 3D folds. Here, the authors use interpretable deep learning to predict 3D folds from sequence without the need for sequence alignment, which also enables the prediction of GTs with new folds.Rahil TaujaleZhongliang ZhouWayland YeungKelley W. MoremenSheng LiNatarajan KannanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Rahil Taujale Zhongliang Zhou Wayland Yeung Kelley W. Moremen Sheng Li Natarajan Kannan Mapping the glycosyltransferase fold landscape using interpretable deep learning |
description |
Glycosyltransferases (GT) are proteins that display extensive sequence and functional variation on a subset of 3D folds. Here, the authors use interpretable deep learning to predict 3D folds from sequence without the need for sequence alignment, which also enables the prediction of GTs with new folds. |
format |
article |
author |
Rahil Taujale Zhongliang Zhou Wayland Yeung Kelley W. Moremen Sheng Li Natarajan Kannan |
author_facet |
Rahil Taujale Zhongliang Zhou Wayland Yeung Kelley W. Moremen Sheng Li Natarajan Kannan |
author_sort |
Rahil Taujale |
title |
Mapping the glycosyltransferase fold landscape using interpretable deep learning |
title_short |
Mapping the glycosyltransferase fold landscape using interpretable deep learning |
title_full |
Mapping the glycosyltransferase fold landscape using interpretable deep learning |
title_fullStr |
Mapping the glycosyltransferase fold landscape using interpretable deep learning |
title_full_unstemmed |
Mapping the glycosyltransferase fold landscape using interpretable deep learning |
title_sort |
mapping the glycosyltransferase fold landscape using interpretable deep learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f5c17c58d05e4400857aec9c85fdb18c |
work_keys_str_mv |
AT rahiltaujale mappingtheglycosyltransferasefoldlandscapeusinginterpretabledeeplearning AT zhongliangzhou mappingtheglycosyltransferasefoldlandscapeusinginterpretabledeeplearning AT waylandyeung mappingtheglycosyltransferasefoldlandscapeusinginterpretabledeeplearning AT kelleywmoremen mappingtheglycosyltransferasefoldlandscapeusinginterpretabledeeplearning AT shengli mappingtheglycosyltransferasefoldlandscapeusinginterpretabledeeplearning AT natarajankannan mappingtheglycosyltransferasefoldlandscapeusinginterpretabledeeplearning |
_version_ |
1718376948492664832 |