Mapping the glycosyltransferase fold landscape using interpretable deep learning

Glycosyltransferases (GT) are proteins that display extensive sequence and functional variation on a subset of 3D folds. Here, the authors use interpretable deep learning to predict 3D folds from sequence without the need for sequence alignment, which also enables the prediction of GTs with new fold...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rahil Taujale, Zhongliang Zhou, Wayland Yeung, Kelley W. Moremen, Sheng Li, Natarajan Kannan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f5c17c58d05e4400857aec9c85fdb18c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f5c17c58d05e4400857aec9c85fdb18c
record_format dspace
spelling oai:doaj.org-article:f5c17c58d05e4400857aec9c85fdb18c2021-12-02T19:16:47ZMapping the glycosyltransferase fold landscape using interpretable deep learning10.1038/s41467-021-25975-92041-1723https://doaj.org/article/f5c17c58d05e4400857aec9c85fdb18c2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25975-9https://doaj.org/toc/2041-1723Glycosyltransferases (GT) are proteins that display extensive sequence and functional variation on a subset of 3D folds. Here, the authors use interpretable deep learning to predict 3D folds from sequence without the need for sequence alignment, which also enables the prediction of GTs with new folds.Rahil TaujaleZhongliang ZhouWayland YeungKelley W. MoremenSheng LiNatarajan KannanNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Rahil Taujale
Zhongliang Zhou
Wayland Yeung
Kelley W. Moremen
Sheng Li
Natarajan Kannan
Mapping the glycosyltransferase fold landscape using interpretable deep learning
description Glycosyltransferases (GT) are proteins that display extensive sequence and functional variation on a subset of 3D folds. Here, the authors use interpretable deep learning to predict 3D folds from sequence without the need for sequence alignment, which also enables the prediction of GTs with new folds.
format article
author Rahil Taujale
Zhongliang Zhou
Wayland Yeung
Kelley W. Moremen
Sheng Li
Natarajan Kannan
author_facet Rahil Taujale
Zhongliang Zhou
Wayland Yeung
Kelley W. Moremen
Sheng Li
Natarajan Kannan
author_sort Rahil Taujale
title Mapping the glycosyltransferase fold landscape using interpretable deep learning
title_short Mapping the glycosyltransferase fold landscape using interpretable deep learning
title_full Mapping the glycosyltransferase fold landscape using interpretable deep learning
title_fullStr Mapping the glycosyltransferase fold landscape using interpretable deep learning
title_full_unstemmed Mapping the glycosyltransferase fold landscape using interpretable deep learning
title_sort mapping the glycosyltransferase fold landscape using interpretable deep learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f5c17c58d05e4400857aec9c85fdb18c
work_keys_str_mv AT rahiltaujale mappingtheglycosyltransferasefoldlandscapeusinginterpretabledeeplearning
AT zhongliangzhou mappingtheglycosyltransferasefoldlandscapeusinginterpretabledeeplearning
AT waylandyeung mappingtheglycosyltransferasefoldlandscapeusinginterpretabledeeplearning
AT kelleywmoremen mappingtheglycosyltransferasefoldlandscapeusinginterpretabledeeplearning
AT shengli mappingtheglycosyltransferasefoldlandscapeusinginterpretabledeeplearning
AT natarajankannan mappingtheglycosyltransferasefoldlandscapeusinginterpretabledeeplearning
_version_ 1718376948492664832