Mapping the glycosyltransferase fold landscape using interpretable deep learning
Glycosyltransferases (GT) are proteins that display extensive sequence and functional variation on a subset of 3D folds. Here, the authors use interpretable deep learning to predict 3D folds from sequence without the need for sequence alignment, which also enables the prediction of GTs with new fold...
Enregistré dans:
Auteurs principaux: | Rahil Taujale, Zhongliang Zhou, Wayland Yeung, Kelley W. Moremen, Sheng Li, Natarajan Kannan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f5c17c58d05e4400857aec9c85fdb18c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Mapping the kinetic barriers of a Large RNA molecule's folding landscape.
par: Jörg C Schlatterer, et autres
Publié: (2014) -
A <italic toggle="yes">Toxoplasma</italic> Prolyl Hydroxylase Mediates Oxygen Stress Responses by Regulating Translation Elongation
par: Celia Florimond, et autres
Publié: (2019) -
Infusing theory into deep learning for interpretable reactivity prediction
par: Shih-Han Wang, et autres
Publié: (2021) -
Interpretable survival prediction for colorectal cancer using deep learning
par: Ellery Wulczyn, et autres
Publié: (2021) -
Bacterial glycosyltransferase-mediated cell-surface chemoenzymatic glycan modification
par: Senlian Hong, et autres
Publié: (2019)