3D collagen matrices modulate the transcriptional trajectory of bone marrow hematopoietic progenitors into macrophage lineage commitment

Physical signals provided by the extracellular matrix (ECM) are key microenvironmental parameters for the fate decision of hematopoietic stem and progenitor cells (HSPC) in bone marrow. Insights into cell-ECM interactions are critical for advancing HSC-based tissue engineering. Herein, we employed c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pan Zhang, Linmu Xu, Jingsong Gao, Guangkui Xu, Yanping Song, Guang Li, Jingjing Ren, Yunjie Zhang, Cheng Yang, Yu Zhang, Ruiheng Xie, Nu Zhang, Hui Yang
Formato: article
Lenguaje:EN
Publicado: KeAi Communications Co., Ltd. 2022
Materias:
Acceso en línea:https://doaj.org/article/f5c8d6db82a34a58bf2f58abfab572c3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Physical signals provided by the extracellular matrix (ECM) are key microenvironmental parameters for the fate decision of hematopoietic stem and progenitor cells (HSPC) in bone marrow. Insights into cell-ECM interactions are critical for advancing HSC-based tissue engineering. Herein, we employed collagen hydrogels and collagen-alginate hydrogels of defined stiffness to study the behaviors of hematopoietic progenitor cells (HPCs). Three-dimensional (3D) collagen hydrogels with a stiffness of 45 Pa were found to promote HPC maintenance and colony formation of monocyte/macrophage progenitors. Using single-cell RNA sequencing (scRNA-seq), we also characterized the comprehensive transcriptional profiles of cells randomly selected from two-dimensional (2D) and 3D hydrogels. A distinct maturation trajectory from HPCs into macrophages within the 3D microenvironment was revealed by these results. 3D-derived macrophages expressed high levels of various cytokines and chemokines, such as Saa3, Cxcl2, Socs3 and Tnf. Furthermore, enhanced communication between 3D-macrophages and other hematopoietic clusters based on ligand-repair interactions was demonstrated through bioinformatic analyses. Our research underlines the regulatory role of matrix-dimensionality in HPC differentiation and therefore probably be applied to the generation of specialized macrophages.