Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults

Abstract We present a data‐driven approach to clustering or grouping Global Navigation Satellite System (GNSS) stations according to observed velocities, displacements or other selected characteristics. Clustering GNSS stations provides useful scientific information, and is a necessary initial step...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Robert Granat, Andrea Donnellan, Michael Heflin, Gregory Lyzenga, Margaret Glasscoe, Jay Parker, Marlon Pierce, Jun Wang, John Rundle, Lisa G. Ludwig
Formato: article
Lenguaje:EN
Publicado: American Geophysical Union (AGU) 2021
Materias:
Acceso en línea:https://doaj.org/article/f5ed864ab8614549a411c94e31e1128e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f5ed864ab8614549a411c94e31e1128e
record_format dspace
spelling oai:doaj.org-article:f5ed864ab8614549a411c94e31e1128e2021-11-23T21:03:09ZClustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults2333-508410.1029/2021EA001680https://doaj.org/article/f5ed864ab8614549a411c94e31e1128e2021-11-01T00:00:00Zhttps://doi.org/10.1029/2021EA001680https://doaj.org/toc/2333-5084Abstract We present a data‐driven approach to clustering or grouping Global Navigation Satellite System (GNSS) stations according to observed velocities, displacements or other selected characteristics. Clustering GNSS stations provides useful scientific information, and is a necessary initial step in other analysis, such as detecting aseismic transient signals (Granat et al., 2013, https://doi.org/10.1785/0220130039). Desired features of the data can be selected for clustering, including some subset of displacement or velocity components, uncertainty estimates, station location, and other relevant information. Based on those selections, the clustering procedure autonomously groups the GNSS stations according to a selected clustering method. We have implemented this approach as a Python application, allowing us to draw upon the full range of open source clustering methods available in Python's scikit‐learn package (Pedregosa et al., 2011, https://doi.org/10.5555/1953048.2078195). The application returns the stations labeled by group as a table and color coded KML file and is designed to work with the GNSS information available from GeoGateway (Donnellan et al., 2021, https://doi.org/10.1007/s12145-020-00561-7; Heflin et al., 2020, https://doi.org/10.1029/2019ea000644) but is easily extensible. We demonstrate the methodology on California and western Nevada. The results show partitions that follow faults or geologic boundaries, including for recent large earthquakes and post‐seismic motion. The San Andreas fault system is most prominent, reflecting Pacific‐North American plate boundary motion. Deformation reflected as class boundaries is distributed north and south of the central California creeping section. For most models a cluster boundary connects the southernmost San Andreas fault with the Eastern California Shear Zone (ECSZ) rather than continuing through the San Gorgonio Pass.Robert GranatAndrea DonnellanMichael HeflinGregory LyzengaMargaret GlasscoeJay ParkerMarlon PierceJun WangJohn RundleLisa G. LudwigAmerican Geophysical Union (AGU)articleclusteringgeodetic imagingtectonicsGNSSfaultsearthquakeAstronomyQB1-991GeologyQE1-996.5ENEarth and Space Science, Vol 8, Iss 11, Pp n/a-n/a (2021)
institution DOAJ
collection DOAJ
language EN
topic clustering
geodetic imaging
tectonics
GNSS
faults
earthquake
Astronomy
QB1-991
Geology
QE1-996.5
spellingShingle clustering
geodetic imaging
tectonics
GNSS
faults
earthquake
Astronomy
QB1-991
Geology
QE1-996.5
Robert Granat
Andrea Donnellan
Michael Heflin
Gregory Lyzenga
Margaret Glasscoe
Jay Parker
Marlon Pierce
Jun Wang
John Rundle
Lisa G. Ludwig
Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults
description Abstract We present a data‐driven approach to clustering or grouping Global Navigation Satellite System (GNSS) stations according to observed velocities, displacements or other selected characteristics. Clustering GNSS stations provides useful scientific information, and is a necessary initial step in other analysis, such as detecting aseismic transient signals (Granat et al., 2013, https://doi.org/10.1785/0220130039). Desired features of the data can be selected for clustering, including some subset of displacement or velocity components, uncertainty estimates, station location, and other relevant information. Based on those selections, the clustering procedure autonomously groups the GNSS stations according to a selected clustering method. We have implemented this approach as a Python application, allowing us to draw upon the full range of open source clustering methods available in Python's scikit‐learn package (Pedregosa et al., 2011, https://doi.org/10.5555/1953048.2078195). The application returns the stations labeled by group as a table and color coded KML file and is designed to work with the GNSS information available from GeoGateway (Donnellan et al., 2021, https://doi.org/10.1007/s12145-020-00561-7; Heflin et al., 2020, https://doi.org/10.1029/2019ea000644) but is easily extensible. We demonstrate the methodology on California and western Nevada. The results show partitions that follow faults or geologic boundaries, including for recent large earthquakes and post‐seismic motion. The San Andreas fault system is most prominent, reflecting Pacific‐North American plate boundary motion. Deformation reflected as class boundaries is distributed north and south of the central California creeping section. For most models a cluster boundary connects the southernmost San Andreas fault with the Eastern California Shear Zone (ECSZ) rather than continuing through the San Gorgonio Pass.
format article
author Robert Granat
Andrea Donnellan
Michael Heflin
Gregory Lyzenga
Margaret Glasscoe
Jay Parker
Marlon Pierce
Jun Wang
John Rundle
Lisa G. Ludwig
author_facet Robert Granat
Andrea Donnellan
Michael Heflin
Gregory Lyzenga
Margaret Glasscoe
Jay Parker
Marlon Pierce
Jun Wang
John Rundle
Lisa G. Ludwig
author_sort Robert Granat
title Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults
title_short Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults
title_full Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults
title_fullStr Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults
title_full_unstemmed Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults
title_sort clustering analysis methods for gnss observations: a data‐driven approach to identifying california's major faults
publisher American Geophysical Union (AGU)
publishDate 2021
url https://doaj.org/article/f5ed864ab8614549a411c94e31e1128e
work_keys_str_mv AT robertgranat clusteringanalysismethodsforgnssobservationsadatadrivenapproachtoidentifyingcaliforniasmajorfaults
AT andreadonnellan clusteringanalysismethodsforgnssobservationsadatadrivenapproachtoidentifyingcaliforniasmajorfaults
AT michaelheflin clusteringanalysismethodsforgnssobservationsadatadrivenapproachtoidentifyingcaliforniasmajorfaults
AT gregorylyzenga clusteringanalysismethodsforgnssobservationsadatadrivenapproachtoidentifyingcaliforniasmajorfaults
AT margaretglasscoe clusteringanalysismethodsforgnssobservationsadatadrivenapproachtoidentifyingcaliforniasmajorfaults
AT jayparker clusteringanalysismethodsforgnssobservationsadatadrivenapproachtoidentifyingcaliforniasmajorfaults
AT marlonpierce clusteringanalysismethodsforgnssobservationsadatadrivenapproachtoidentifyingcaliforniasmajorfaults
AT junwang clusteringanalysismethodsforgnssobservationsadatadrivenapproachtoidentifyingcaliforniasmajorfaults
AT johnrundle clusteringanalysismethodsforgnssobservationsadatadrivenapproachtoidentifyingcaliforniasmajorfaults
AT lisagludwig clusteringanalysismethodsforgnssobservationsadatadrivenapproachtoidentifyingcaliforniasmajorfaults
_version_ 1718416130482110464