Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults
Abstract We present a data‐driven approach to clustering or grouping Global Navigation Satellite System (GNSS) stations according to observed velocities, displacements or other selected characteristics. Clustering GNSS stations provides useful scientific information, and is a necessary initial step...
Guardado en:
Autores principales: | Robert Granat, Andrea Donnellan, Michael Heflin, Gregory Lyzenga, Margaret Glasscoe, Jay Parker, Marlon Pierce, Jun Wang, John Rundle, Lisa G. Ludwig |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f5ed864ab8614549a411c94e31e1128e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Crustal deformation detection capability of the GNSS-A seafloor geodetic observation array (SGO-A), provided by Japan Coast Guard
por: Yusuke Yokota, et al.
Publicado: (2021) -
Analysis of GNSS Displacements in Europe and Their Comparison with Hydrological Loading Models
por: Alexandre Michel, et al.
Publicado: (2021) -
Earthquake Magnitude Estimation from High-Rate GNSS Data: A Case Study of the 2021 Mw 7.3 Maduo Earthquake
por: Zhiyu Gao, et al.
Publicado: (2021) -
Fumarolic Pathways Were Structurally Controlled by a Strike-Slip Fault System Beneath the Bishop Tuff, Bishop, California
por: William T. Jenkins, et al.
Publicado: (2021) -
3D TOMOGRAPHY OF IONOSPHERIC ANOMALIES AFTER THE 2020 TURKEY EARTHQUAKE AND TSUNAMI USING GNSS-TEC
por: Mokhamad Nur Cahyadi *email correspondence: cahyadi@geodesy.its.ac.id, et al.
Publicado: (2021)