Combination of a proteomics approach and reengineering of meso scale network models for prediction of mode-of-action for tyrosine kinase inhibitors.

In drug discovery, the characterisation of the precise modes of action (MoA) and of unwanted off-target effects of novel molecularly targeted compounds is of highest relevance. Recent approaches for identification of MoA have employed various techniques for modeling of well defined signaling pathway...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Stefan Balabanov, Thomas Wilhelm, Simone Venz, Gunhild Keller, Christian Scharf, Heike Pospisil, Melanie Braig, Christine Barett, Carsten Bokemeyer, Reinhard Walther, Tim H Brümmendorf, Andreas Schuppert
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f5ef203a54d44cec9bc3e7b68936836e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f5ef203a54d44cec9bc3e7b68936836e
record_format dspace
spelling oai:doaj.org-article:f5ef203a54d44cec9bc3e7b68936836e2021-11-18T08:02:07ZCombination of a proteomics approach and reengineering of meso scale network models for prediction of mode-of-action for tyrosine kinase inhibitors.1932-620310.1371/journal.pone.0053668https://doaj.org/article/f5ef203a54d44cec9bc3e7b68936836e2013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23326482/?tool=EBIhttps://doaj.org/toc/1932-6203In drug discovery, the characterisation of the precise modes of action (MoA) and of unwanted off-target effects of novel molecularly targeted compounds is of highest relevance. Recent approaches for identification of MoA have employed various techniques for modeling of well defined signaling pathways including structural information, changes in phenotypic behavior of cells and gene expression patterns after drug treatment. However, efficient approaches focusing on proteome wide data for the identification of MoA including interference with mutations are underrepresented. As mutations are key drivers of drug resistance in molecularly targeted tumor therapies, efficient analysis and modeling of downstream effects of mutations on drug MoA is a key to efficient development of improved targeted anti-cancer drugs. Here we present a combination of a global proteome analysis, reengineering of network models and integration of apoptosis data used to infer the mode-of-action of various tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) cell lines expressing wild type as well as TKI resistance conferring mutants of BCR-ABL. The inferred network models provide a tool to predict the main MoA of drugs as well as to grouping of drugs with known similar kinase inhibitory activity patterns in comparison to drugs with an additional MoA. We believe that our direct network reconstruction approach, demonstrated on proteomics data, can provide a complementary method to the established network reconstruction approaches for the preclinical modeling of the MoA of various types of targeted drugs in cancer treatment. Hence it may contribute to the more precise prediction of clinically relevant on- and off-target effects of TKIs.Stefan BalabanovThomas WilhelmSimone VenzGunhild KellerChristian ScharfHeike PospisilMelanie BraigChristine BarettCarsten BokemeyerReinhard WaltherTim H BrümmendorfAndreas SchuppertPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 1, p e53668 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Stefan Balabanov
Thomas Wilhelm
Simone Venz
Gunhild Keller
Christian Scharf
Heike Pospisil
Melanie Braig
Christine Barett
Carsten Bokemeyer
Reinhard Walther
Tim H Brümmendorf
Andreas Schuppert
Combination of a proteomics approach and reengineering of meso scale network models for prediction of mode-of-action for tyrosine kinase inhibitors.
description In drug discovery, the characterisation of the precise modes of action (MoA) and of unwanted off-target effects of novel molecularly targeted compounds is of highest relevance. Recent approaches for identification of MoA have employed various techniques for modeling of well defined signaling pathways including structural information, changes in phenotypic behavior of cells and gene expression patterns after drug treatment. However, efficient approaches focusing on proteome wide data for the identification of MoA including interference with mutations are underrepresented. As mutations are key drivers of drug resistance in molecularly targeted tumor therapies, efficient analysis and modeling of downstream effects of mutations on drug MoA is a key to efficient development of improved targeted anti-cancer drugs. Here we present a combination of a global proteome analysis, reengineering of network models and integration of apoptosis data used to infer the mode-of-action of various tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) cell lines expressing wild type as well as TKI resistance conferring mutants of BCR-ABL. The inferred network models provide a tool to predict the main MoA of drugs as well as to grouping of drugs with known similar kinase inhibitory activity patterns in comparison to drugs with an additional MoA. We believe that our direct network reconstruction approach, demonstrated on proteomics data, can provide a complementary method to the established network reconstruction approaches for the preclinical modeling of the MoA of various types of targeted drugs in cancer treatment. Hence it may contribute to the more precise prediction of clinically relevant on- and off-target effects of TKIs.
format article
author Stefan Balabanov
Thomas Wilhelm
Simone Venz
Gunhild Keller
Christian Scharf
Heike Pospisil
Melanie Braig
Christine Barett
Carsten Bokemeyer
Reinhard Walther
Tim H Brümmendorf
Andreas Schuppert
author_facet Stefan Balabanov
Thomas Wilhelm
Simone Venz
Gunhild Keller
Christian Scharf
Heike Pospisil
Melanie Braig
Christine Barett
Carsten Bokemeyer
Reinhard Walther
Tim H Brümmendorf
Andreas Schuppert
author_sort Stefan Balabanov
title Combination of a proteomics approach and reengineering of meso scale network models for prediction of mode-of-action for tyrosine kinase inhibitors.
title_short Combination of a proteomics approach and reengineering of meso scale network models for prediction of mode-of-action for tyrosine kinase inhibitors.
title_full Combination of a proteomics approach and reengineering of meso scale network models for prediction of mode-of-action for tyrosine kinase inhibitors.
title_fullStr Combination of a proteomics approach and reengineering of meso scale network models for prediction of mode-of-action for tyrosine kinase inhibitors.
title_full_unstemmed Combination of a proteomics approach and reengineering of meso scale network models for prediction of mode-of-action for tyrosine kinase inhibitors.
title_sort combination of a proteomics approach and reengineering of meso scale network models for prediction of mode-of-action for tyrosine kinase inhibitors.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/f5ef203a54d44cec9bc3e7b68936836e
work_keys_str_mv AT stefanbalabanov combinationofaproteomicsapproachandreengineeringofmesoscalenetworkmodelsforpredictionofmodeofactionfortyrosinekinaseinhibitors
AT thomaswilhelm combinationofaproteomicsapproachandreengineeringofmesoscalenetworkmodelsforpredictionofmodeofactionfortyrosinekinaseinhibitors
AT simonevenz combinationofaproteomicsapproachandreengineeringofmesoscalenetworkmodelsforpredictionofmodeofactionfortyrosinekinaseinhibitors
AT gunhildkeller combinationofaproteomicsapproachandreengineeringofmesoscalenetworkmodelsforpredictionofmodeofactionfortyrosinekinaseinhibitors
AT christianscharf combinationofaproteomicsapproachandreengineeringofmesoscalenetworkmodelsforpredictionofmodeofactionfortyrosinekinaseinhibitors
AT heikepospisil combinationofaproteomicsapproachandreengineeringofmesoscalenetworkmodelsforpredictionofmodeofactionfortyrosinekinaseinhibitors
AT melaniebraig combinationofaproteomicsapproachandreengineeringofmesoscalenetworkmodelsforpredictionofmodeofactionfortyrosinekinaseinhibitors
AT christinebarett combinationofaproteomicsapproachandreengineeringofmesoscalenetworkmodelsforpredictionofmodeofactionfortyrosinekinaseinhibitors
AT carstenbokemeyer combinationofaproteomicsapproachandreengineeringofmesoscalenetworkmodelsforpredictionofmodeofactionfortyrosinekinaseinhibitors
AT reinhardwalther combinationofaproteomicsapproachandreengineeringofmesoscalenetworkmodelsforpredictionofmodeofactionfortyrosinekinaseinhibitors
AT timhbrummendorf combinationofaproteomicsapproachandreengineeringofmesoscalenetworkmodelsforpredictionofmodeofactionfortyrosinekinaseinhibitors
AT andreasschuppert combinationofaproteomicsapproachandreengineeringofmesoscalenetworkmodelsforpredictionofmodeofactionfortyrosinekinaseinhibitors
_version_ 1718422641532993536