Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias

Machine learning algorithms offer new possibilities for automating reaction procedures. The present paper investigates automated reaction’s prediction with Molecular Transformer, the state-of-the-art model for reaction prediction, proposing a new debiased dataset for a realistic assessment of the mo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dávid Péter Kovács, William McCorkindale, Alpha A. Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f5f5a1b384fd4609aa785325aa34d776
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Machine learning algorithms offer new possibilities for automating reaction procedures. The present paper investigates automated reaction’s prediction with Molecular Transformer, the state-of-the-art model for reaction prediction, proposing a new debiased dataset for a realistic assessment of the model’s performance.