Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
Machine learning algorithms offer new possibilities for automating reaction procedures. The present paper investigates automated reaction’s prediction with Molecular Transformer, the state-of-the-art model for reaction prediction, proposing a new debiased dataset for a realistic assessment of the mo...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f5f5a1b384fd4609aa785325aa34d776 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f5f5a1b384fd4609aa785325aa34d776 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f5f5a1b384fd4609aa785325aa34d7762021-12-02T17:05:49ZQuantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias10.1038/s41467-021-21895-w2041-1723https://doaj.org/article/f5f5a1b384fd4609aa785325aa34d7762021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21895-whttps://doaj.org/toc/2041-1723Machine learning algorithms offer new possibilities for automating reaction procedures. The present paper investigates automated reaction’s prediction with Molecular Transformer, the state-of-the-art model for reaction prediction, proposing a new debiased dataset for a realistic assessment of the model’s performance.Dávid Péter KovácsWilliam McCorkindaleAlpha A. LeeNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Dávid Péter Kovács William McCorkindale Alpha A. Lee Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias |
description |
Machine learning algorithms offer new possibilities for automating reaction procedures. The present paper investigates automated reaction’s prediction with Molecular Transformer, the state-of-the-art model for reaction prediction, proposing a new debiased dataset for a realistic assessment of the model’s performance. |
format |
article |
author |
Dávid Péter Kovács William McCorkindale Alpha A. Lee |
author_facet |
Dávid Péter Kovács William McCorkindale Alpha A. Lee |
author_sort |
Dávid Péter Kovács |
title |
Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias |
title_short |
Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias |
title_full |
Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias |
title_fullStr |
Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias |
title_full_unstemmed |
Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias |
title_sort |
quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f5f5a1b384fd4609aa785325aa34d776 |
work_keys_str_mv |
AT davidpeterkovacs quantitativeinterpretationexplainsmachinelearningmodelsforchemicalreactionpredictionanduncoversbias AT williammccorkindale quantitativeinterpretationexplainsmachinelearningmodelsforchemicalreactionpredictionanduncoversbias AT alphaalee quantitativeinterpretationexplainsmachinelearningmodelsforchemicalreactionpredictionanduncoversbias |
_version_ |
1718381826589851648 |