Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias

Machine learning algorithms offer new possibilities for automating reaction procedures. The present paper investigates automated reaction’s prediction with Molecular Transformer, the state-of-the-art model for reaction prediction, proposing a new debiased dataset for a realistic assessment of the mo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dávid Péter Kovács, William McCorkindale, Alpha A. Lee
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f5f5a1b384fd4609aa785325aa34d776
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f5f5a1b384fd4609aa785325aa34d776
record_format dspace
spelling oai:doaj.org-article:f5f5a1b384fd4609aa785325aa34d7762021-12-02T17:05:49ZQuantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias10.1038/s41467-021-21895-w2041-1723https://doaj.org/article/f5f5a1b384fd4609aa785325aa34d7762021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21895-whttps://doaj.org/toc/2041-1723Machine learning algorithms offer new possibilities for automating reaction procedures. The present paper investigates automated reaction’s prediction with Molecular Transformer, the state-of-the-art model for reaction prediction, proposing a new debiased dataset for a realistic assessment of the model’s performance.Dávid Péter KovácsWilliam McCorkindaleAlpha A. LeeNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Dávid Péter Kovács
William McCorkindale
Alpha A. Lee
Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
description Machine learning algorithms offer new possibilities for automating reaction procedures. The present paper investigates automated reaction’s prediction with Molecular Transformer, the state-of-the-art model for reaction prediction, proposing a new debiased dataset for a realistic assessment of the model’s performance.
format article
author Dávid Péter Kovács
William McCorkindale
Alpha A. Lee
author_facet Dávid Péter Kovács
William McCorkindale
Alpha A. Lee
author_sort Dávid Péter Kovács
title Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
title_short Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
title_full Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
title_fullStr Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
title_full_unstemmed Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
title_sort quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f5f5a1b384fd4609aa785325aa34d776
work_keys_str_mv AT davidpeterkovacs quantitativeinterpretationexplainsmachinelearningmodelsforchemicalreactionpredictionanduncoversbias
AT williammccorkindale quantitativeinterpretationexplainsmachinelearningmodelsforchemicalreactionpredictionanduncoversbias
AT alphaalee quantitativeinterpretationexplainsmachinelearningmodelsforchemicalreactionpredictionanduncoversbias
_version_ 1718381826589851648