Energy gap estimation of zinc sulfide metal chalcogenide nanostructure semiconductor using genetically hybridized support vector regression
Zinc sulfide is a metal chalcogenide semiconductor with promising potentials in environmental sensors, short wavelength light emitting diodes, biomedical imaging, display light sources, transistors, flat panel displays, optoelectronics, and photocatalysis. Adjusting the energy gap (EG) of zinc sulfi...
Guardado en:
Autor principal: | Nahier Aldhafferi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIP Publishing LLC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f5f842214f724e2c83196255e59986a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Crowd estimation using key‐point matching with support vector regression
por: E.M.C.L Ekanayake, et al.
Publicado: (2021) -
Metal Sulfide Semiconductor Nanomaterials and Polymer Microgels for Biomedical Applications
por: Athandwe M. Paca, et al.
Publicado: (2021) -
Prediction of xylanase optimal temperature by support vector regression
por: Zhang,Guangya, et al.
Publicado: (2012) -
An ISaDE algorithm combined with support vector regression for estimating discharge coefficient of W-planform weirs
por: Somayeh Emami, et al.
Publicado: (2021) -
SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERS
por: YU,XINLIANG, et al.
Publicado: (2011)