Energy gap estimation of zinc sulfide metal chalcogenide nanostructure semiconductor using genetically hybridized support vector regression
Zinc sulfide is a metal chalcogenide semiconductor with promising potentials in environmental sensors, short wavelength light emitting diodes, biomedical imaging, display light sources, transistors, flat panel displays, optoelectronics, and photocatalysis. Adjusting the energy gap (EG) of zinc sulfi...
Enregistré dans:
Auteur principal: | Nahier Aldhafferi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
AIP Publishing LLC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f5f842214f724e2c83196255e59986a5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Crowd estimation using key‐point matching with support vector regression
par: E.M.C.L Ekanayake, et autres
Publié: (2021) -
Metal Sulfide Semiconductor Nanomaterials and Polymer Microgels for Biomedical Applications
par: Athandwe M. Paca, et autres
Publié: (2021) -
Prediction of xylanase optimal temperature by support vector regression
par: Zhang,Guangya, et autres
Publié: (2012) -
An ISaDE algorithm combined with support vector regression for estimating discharge coefficient of W-planform weirs
par: Somayeh Emami, et autres
Publié: (2021) -
SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERS
par: YU,XINLIANG, et autres
Publié: (2011)