Sensor-Fusion for Smartphone Location Tracking Using Hybrid Multimodal Deep Neural Networks
Many engineered approaches have been proposed over the years for solving the hard problem of performing indoor localization using smartphone sensors. However, specialising these solutions for difficult edge cases remains challenging. Here we propose an end-to-end hybrid multimodal deep neural networ...
Guardado en:
Autores principales: | Xijia Wei, Zhiqiang Wei, Valentin Radu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f5f97214bfc74fd999d152b1db17ef7f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Indoor Position-Estimation Algorithm Using Smartphone IMU Sensor Data
por: Alwin Poulose, et al.
Publicado: (2019) -
An Enhanced Pedestrian Visual-Inertial SLAM System Aided with Vanishing Point in Indoor Environments
por: Wennan Chai, et al.
Publicado: (2021) -
Targeted Aspect-Based Multimodal Sentiment Analysis: An Attention Capsule Extraction and Multi-Head Fusion Network
por: Donghong Gu, et al.
Publicado: (2021) -
Multimodal Identification Based on Fingerprint and Face Images via a Hetero-Associative Memory Method
por: Qi Han, et al.
Publicado: (2021) -
WiFi FTM, UWB and Cellular-Based Radio Fusion for Indoor Positioning
por: Carlos S. Álvarez-Merino, et al.
Publicado: (2021)