Sensor-Fusion for Smartphone Location Tracking Using Hybrid Multimodal Deep Neural Networks
Many engineered approaches have been proposed over the years for solving the hard problem of performing indoor localization using smartphone sensors. However, specialising these solutions for difficult edge cases remains challenging. Here we propose an end-to-end hybrid multimodal deep neural networ...
Enregistré dans:
Auteurs principaux: | Xijia Wei, Zhiqiang Wei, Valentin Radu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f5f97214bfc74fd999d152b1db17ef7f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An Indoor Position-Estimation Algorithm Using Smartphone IMU Sensor Data
par: Alwin Poulose, et autres
Publié: (2019) -
An Enhanced Pedestrian Visual-Inertial SLAM System Aided with Vanishing Point in Indoor Environments
par: Wennan Chai, et autres
Publié: (2021) -
Targeted Aspect-Based Multimodal Sentiment Analysis: An Attention Capsule Extraction and Multi-Head Fusion Network
par: Donghong Gu, et autres
Publié: (2021) -
Multimodal Identification Based on Fingerprint and Face Images via a Hetero-Associative Memory Method
par: Qi Han, et autres
Publié: (2021) -
WiFi FTM, UWB and Cellular-Based Radio Fusion for Indoor Positioning
par: Carlos S. Álvarez-Merino, et autres
Publié: (2021)