SlimPLS: a method for feature selection in gene expression-based disease classification.
A major challenge in biomedical studies in recent years has been the classification of gene expression profiles into categories, such as cases and controls. This is done by first training a classifier by using a labeled training set containing labeled samples from the two populations, and then using...
Guardado en:
Autores principales: | Michael Gutkin, Ron Shamir, Gideon Dror |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f60a986aeaf14bd5a72e9be2b371e2a2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Slim-panel holographic video display
por: Jungkwuen An, et al.
Publicado: (2020) -
Lung adenocarcinoma and lung squamous cell carcinoma cancer classification, biomarker identification, and gene expression analysis using overlapping feature selection methods
por: Joe W. Chen, et al.
Publicado: (2021) -
A new method combining LDA and PLS for dimension reduction.
por: Liang Tang, et al.
Publicado: (2014) -
Feature Selection Methods Based on Symmetric Uncertainty Coefficients and Independent Classification Information
por: Li Zhang, et al.
Publicado: (2021) -
A PSO-based multi-objective multi-label feature selection method in classification
por: Yong Zhang, et al.
Publicado: (2017)