Optimizing Urban LiDAR Flight Path Planning Using a Genetic Algorithm and a Dual Parallel Computing Framework
This paper introduces a genetic algorithm (GA) and a beam tracing algorithm incorporated within a dual parallel computing framework to optimize urban aerial laser scanning (ALS) missions to maximize vertical façade data capture, as needed for many three-dimensional reconstruction and modeling workfl...
Guardado en:
Autores principales: | Anh Vu Vo, Debra F. Laefer, Jonathan Byrne |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f60bd1d39b004301a722651d85ca3c50 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Estimating Ground Elevation and Vegetation Characteristics in Coastal Salt Marshes Using UAV-Based LiDAR and Digital Aerial Photogrammetry
por: Daniele Pinton, et al.
Publicado: (2021) -
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
por: Genping Zhao, et al.
Publicado: (2021) -
Performance of Mobile LiDAR in Real Road Driving Conditions
por: Jisoo Kim, et al.
Publicado: (2021) -
Assessing understory development in forest plantations using laser imaging detection and ranging (LiDAR)
por: HERNÁNDEZ,JAIME, et al.
Publicado: (2013) -
Mapping tree genera using discrete LiDAR and geometric tree metrics
por: Ko,Connie, et al.
Publicado: (2012)