Deep learning the collisional cross sections of the peptide universe from a million experimental values
Proteomics has been advanced by algorithms that can predict different peptide features, but predicting peptide collisional cross sections (CCS) has remained challenging. Here, the authors measure over one million CCS values of tryptic peptides and develop a deep learning model for peptide CCS predic...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f630ea4ee7ac476f8a6cf713b4000619 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f630ea4ee7ac476f8a6cf713b4000619 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f630ea4ee7ac476f8a6cf713b40006192021-12-02T12:11:16ZDeep learning the collisional cross sections of the peptide universe from a million experimental values10.1038/s41467-021-21352-82041-1723https://doaj.org/article/f630ea4ee7ac476f8a6cf713b40006192021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21352-8https://doaj.org/toc/2041-1723Proteomics has been advanced by algorithms that can predict different peptide features, but predicting peptide collisional cross sections (CCS) has remained challenging. Here, the authors measure over one million CCS values of tryptic peptides and develop a deep learning model for peptide CCS prediction.Florian MeierNiklas D. KöhlerAndreas-David BrunnerJean-Marc H. WankaEugenia VoytikMaximilian T. StraussFabian J. TheisMatthias MannNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Florian Meier Niklas D. Köhler Andreas-David Brunner Jean-Marc H. Wanka Eugenia Voytik Maximilian T. Strauss Fabian J. Theis Matthias Mann Deep learning the collisional cross sections of the peptide universe from a million experimental values |
description |
Proteomics has been advanced by algorithms that can predict different peptide features, but predicting peptide collisional cross sections (CCS) has remained challenging. Here, the authors measure over one million CCS values of tryptic peptides and develop a deep learning model for peptide CCS prediction. |
format |
article |
author |
Florian Meier Niklas D. Köhler Andreas-David Brunner Jean-Marc H. Wanka Eugenia Voytik Maximilian T. Strauss Fabian J. Theis Matthias Mann |
author_facet |
Florian Meier Niklas D. Köhler Andreas-David Brunner Jean-Marc H. Wanka Eugenia Voytik Maximilian T. Strauss Fabian J. Theis Matthias Mann |
author_sort |
Florian Meier |
title |
Deep learning the collisional cross sections of the peptide universe from a million experimental values |
title_short |
Deep learning the collisional cross sections of the peptide universe from a million experimental values |
title_full |
Deep learning the collisional cross sections of the peptide universe from a million experimental values |
title_fullStr |
Deep learning the collisional cross sections of the peptide universe from a million experimental values |
title_full_unstemmed |
Deep learning the collisional cross sections of the peptide universe from a million experimental values |
title_sort |
deep learning the collisional cross sections of the peptide universe from a million experimental values |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f630ea4ee7ac476f8a6cf713b4000619 |
work_keys_str_mv |
AT florianmeier deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues AT niklasdkohler deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues AT andreasdavidbrunner deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues AT jeanmarchwanka deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues AT eugeniavoytik deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues AT maximiliantstrauss deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues AT fabianjtheis deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues AT matthiasmann deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues |
_version_ |
1718394667689574400 |