Deep learning the collisional cross sections of the peptide universe from a million experimental values

Proteomics has been advanced by algorithms that can predict different peptide features, but predicting peptide collisional cross sections (CCS) has remained challenging. Here, the authors measure over one million CCS values of tryptic peptides and develop a deep learning model for peptide CCS predic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Florian Meier, Niklas D. Köhler, Andreas-David Brunner, Jean-Marc H. Wanka, Eugenia Voytik, Maximilian T. Strauss, Fabian J. Theis, Matthias Mann
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/f630ea4ee7ac476f8a6cf713b4000619
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f630ea4ee7ac476f8a6cf713b4000619
record_format dspace
spelling oai:doaj.org-article:f630ea4ee7ac476f8a6cf713b40006192021-12-02T12:11:16ZDeep learning the collisional cross sections of the peptide universe from a million experimental values10.1038/s41467-021-21352-82041-1723https://doaj.org/article/f630ea4ee7ac476f8a6cf713b40006192021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21352-8https://doaj.org/toc/2041-1723Proteomics has been advanced by algorithms that can predict different peptide features, but predicting peptide collisional cross sections (CCS) has remained challenging. Here, the authors measure over one million CCS values of tryptic peptides and develop a deep learning model for peptide CCS prediction.Florian MeierNiklas D. KöhlerAndreas-David BrunnerJean-Marc H. WankaEugenia VoytikMaximilian T. StraussFabian J. TheisMatthias MannNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Florian Meier
Niklas D. Köhler
Andreas-David Brunner
Jean-Marc H. Wanka
Eugenia Voytik
Maximilian T. Strauss
Fabian J. Theis
Matthias Mann
Deep learning the collisional cross sections of the peptide universe from a million experimental values
description Proteomics has been advanced by algorithms that can predict different peptide features, but predicting peptide collisional cross sections (CCS) has remained challenging. Here, the authors measure over one million CCS values of tryptic peptides and develop a deep learning model for peptide CCS prediction.
format article
author Florian Meier
Niklas D. Köhler
Andreas-David Brunner
Jean-Marc H. Wanka
Eugenia Voytik
Maximilian T. Strauss
Fabian J. Theis
Matthias Mann
author_facet Florian Meier
Niklas D. Köhler
Andreas-David Brunner
Jean-Marc H. Wanka
Eugenia Voytik
Maximilian T. Strauss
Fabian J. Theis
Matthias Mann
author_sort Florian Meier
title Deep learning the collisional cross sections of the peptide universe from a million experimental values
title_short Deep learning the collisional cross sections of the peptide universe from a million experimental values
title_full Deep learning the collisional cross sections of the peptide universe from a million experimental values
title_fullStr Deep learning the collisional cross sections of the peptide universe from a million experimental values
title_full_unstemmed Deep learning the collisional cross sections of the peptide universe from a million experimental values
title_sort deep learning the collisional cross sections of the peptide universe from a million experimental values
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f630ea4ee7ac476f8a6cf713b4000619
work_keys_str_mv AT florianmeier deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues
AT niklasdkohler deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues
AT andreasdavidbrunner deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues
AT jeanmarchwanka deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues
AT eugeniavoytik deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues
AT maximiliantstrauss deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues
AT fabianjtheis deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues
AT matthiasmann deeplearningthecollisionalcrosssectionsofthepeptideuniversefromamillionexperimentalvalues
_version_ 1718394667689574400