Deep learning the collisional cross sections of the peptide universe from a million experimental values
Proteomics has been advanced by algorithms that can predict different peptide features, but predicting peptide collisional cross sections (CCS) has remained challenging. Here, the authors measure over one million CCS values of tryptic peptides and develop a deep learning model for peptide CCS predic...
Guardado en:
Autores principales: | Florian Meier, Niklas D. Köhler, Andreas-David Brunner, Jean-Marc H. Wanka, Eugenia Voytik, Maximilian T. Strauss, Fabian J. Theis, Matthias Mann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f630ea4ee7ac476f8a6cf713b4000619 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Collisional formation of top-shaped asteroids and implications for the origins of Ryugu and Bennu
por: P. Michel, et al.
Publicado: (2020) -
Experimental certification of millions of genuinely entangled atoms in a solid
por: Florian Fröwis, et al.
Publicado: (2017) -
Thomson and collisional regimes of in-phase coherent microwave scattering off gaseous microplasmas
por: Adam R. Patel, et al.
Publicado: (2021) -
Observations of pressure anisotropy effects within semi-collisional magnetized plasma bubbles
por: E. R. Tubman, et al.
Publicado: (2021) -
Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application
por: Fangyang Hu, et al.
Publicado: (2017)