Definition of Environmental Variables and Critical Periods to Evaluate Heat Tolerance in Large White Pigs Based on Single-Step Genomic Reaction Norms
Properly quantifying environmental heat stress (HS) is still a major challenge in livestock breeding programs, especially as adverse climatic events become more common. The definition of critical periods and climatic variables to be used as the environmental gradient is a key step for genetically ev...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f65167d087b24b2aa8d1364637871532 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f65167d087b24b2aa8d1364637871532 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f65167d087b24b2aa8d13646378715322021-11-30T13:18:47ZDefinition of Environmental Variables and Critical Periods to Evaluate Heat Tolerance in Large White Pigs Based on Single-Step Genomic Reaction Norms1664-802110.3389/fgene.2021.717409https://doaj.org/article/f65167d087b24b2aa8d13646378715322021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fgene.2021.717409/fullhttps://doaj.org/toc/1664-8021Properly quantifying environmental heat stress (HS) is still a major challenge in livestock breeding programs, especially as adverse climatic events become more common. The definition of critical periods and climatic variables to be used as the environmental gradient is a key step for genetically evaluating heat tolerance (HTol). Therefore, the main objectives of this study were to define the best critical periods and environmental variables (ENV) to evaluate HT and estimate variance components for HT in Large White pigs. The traits included in this study were ultrasound backfat thickness (BFT), ultrasound muscle depth (MDP), piglet weaning weight (WW), off-test weight (OTW), interval between farrowing (IBF), total number of piglets born (TNB), number of piglets born alive (NBA), number of piglets born dead (NBD), number of piglets weaned (WN), and weaning to estrus interval (IWE). Seven climatic variables based on public weather station data were compared based on three criteria, including the following: (1) strongest G×E estimate as measured by the slope term, (2) ENV yielding the highest theoretical accuracy of the genomic estimated breeding values (GEBV), and (3) variable yielding the highest distribution of GEBV per ENV. Relative humidity (for BFT, MDP, NBD, WN, and WW) and maximum temperature (for OTW, TNB, NBA, IBF, and IWE) are the recommended ENV based on the analyzed criteria. The acute HS (average of 30 days before the measurement date) is the critical period recommended for OTW, BFT, and MDP in the studied population. For WN, WW, IBF, and IWE, a period ranging from 34 days prior to farrowing up to weaning is recommended. For TNB, NBA, and NBD, the critical period from 20 days prior to breeding up to 30 days into gestation is recommended. The genetic correlation values indicate that the traits were largely (WN, WW, IBF, and IWE), moderately (OTW, TNB, and NBA), or weakly (MDP, BFT, and NBD) affected by G×E interactions. This study provides relevant recommendations of critical periods and climatic gradients for several traits in order to evaluate HS in Large White pigs. These observations demonstrate that HT in Large White pigs is heritable, and genetic progress can be achieved through genetic and genomic selection.P. H. F. FreitasJ. S. JohnsonS. ChenS. ChenH. R. OliveiraH. R. OliveiraF. TiezziS. F. LázaroS. F. LázaroY. HuangY. GuA. P. SchinckelL. F. BritoFrontiers Media S.A.articleheat stressheat susceptiblegenotype-by-environment interactionresiliencematernal-pig lineGeneticsQH426-470ENFrontiers in Genetics, Vol 12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
heat stress heat susceptible genotype-by-environment interaction resilience maternal-pig line Genetics QH426-470 |
spellingShingle |
heat stress heat susceptible genotype-by-environment interaction resilience maternal-pig line Genetics QH426-470 P. H. F. Freitas J. S. Johnson S. Chen S. Chen H. R. Oliveira H. R. Oliveira F. Tiezzi S. F. Lázaro S. F. Lázaro Y. Huang Y. Gu A. P. Schinckel L. F. Brito Definition of Environmental Variables and Critical Periods to Evaluate Heat Tolerance in Large White Pigs Based on Single-Step Genomic Reaction Norms |
description |
Properly quantifying environmental heat stress (HS) is still a major challenge in livestock breeding programs, especially as adverse climatic events become more common. The definition of critical periods and climatic variables to be used as the environmental gradient is a key step for genetically evaluating heat tolerance (HTol). Therefore, the main objectives of this study were to define the best critical periods and environmental variables (ENV) to evaluate HT and estimate variance components for HT in Large White pigs. The traits included in this study were ultrasound backfat thickness (BFT), ultrasound muscle depth (MDP), piglet weaning weight (WW), off-test weight (OTW), interval between farrowing (IBF), total number of piglets born (TNB), number of piglets born alive (NBA), number of piglets born dead (NBD), number of piglets weaned (WN), and weaning to estrus interval (IWE). Seven climatic variables based on public weather station data were compared based on three criteria, including the following: (1) strongest G×E estimate as measured by the slope term, (2) ENV yielding the highest theoretical accuracy of the genomic estimated breeding values (GEBV), and (3) variable yielding the highest distribution of GEBV per ENV. Relative humidity (for BFT, MDP, NBD, WN, and WW) and maximum temperature (for OTW, TNB, NBA, IBF, and IWE) are the recommended ENV based on the analyzed criteria. The acute HS (average of 30 days before the measurement date) is the critical period recommended for OTW, BFT, and MDP in the studied population. For WN, WW, IBF, and IWE, a period ranging from 34 days prior to farrowing up to weaning is recommended. For TNB, NBA, and NBD, the critical period from 20 days prior to breeding up to 30 days into gestation is recommended. The genetic correlation values indicate that the traits were largely (WN, WW, IBF, and IWE), moderately (OTW, TNB, and NBA), or weakly (MDP, BFT, and NBD) affected by G×E interactions. This study provides relevant recommendations of critical periods and climatic gradients for several traits in order to evaluate HS in Large White pigs. These observations demonstrate that HT in Large White pigs is heritable, and genetic progress can be achieved through genetic and genomic selection. |
format |
article |
author |
P. H. F. Freitas J. S. Johnson S. Chen S. Chen H. R. Oliveira H. R. Oliveira F. Tiezzi S. F. Lázaro S. F. Lázaro Y. Huang Y. Gu A. P. Schinckel L. F. Brito |
author_facet |
P. H. F. Freitas J. S. Johnson S. Chen S. Chen H. R. Oliveira H. R. Oliveira F. Tiezzi S. F. Lázaro S. F. Lázaro Y. Huang Y. Gu A. P. Schinckel L. F. Brito |
author_sort |
P. H. F. Freitas |
title |
Definition of Environmental Variables and Critical Periods to Evaluate Heat Tolerance in Large White Pigs Based on Single-Step Genomic Reaction Norms |
title_short |
Definition of Environmental Variables and Critical Periods to Evaluate Heat Tolerance in Large White Pigs Based on Single-Step Genomic Reaction Norms |
title_full |
Definition of Environmental Variables and Critical Periods to Evaluate Heat Tolerance in Large White Pigs Based on Single-Step Genomic Reaction Norms |
title_fullStr |
Definition of Environmental Variables and Critical Periods to Evaluate Heat Tolerance in Large White Pigs Based on Single-Step Genomic Reaction Norms |
title_full_unstemmed |
Definition of Environmental Variables and Critical Periods to Evaluate Heat Tolerance in Large White Pigs Based on Single-Step Genomic Reaction Norms |
title_sort |
definition of environmental variables and critical periods to evaluate heat tolerance in large white pigs based on single-step genomic reaction norms |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/f65167d087b24b2aa8d1364637871532 |
work_keys_str_mv |
AT phffreitas definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms AT jsjohnson definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms AT schen definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms AT schen definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms AT hroliveira definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms AT hroliveira definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms AT ftiezzi definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms AT sflazaro definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms AT sflazaro definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms AT yhuang definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms AT ygu definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms AT apschinckel definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms AT lfbrito definitionofenvironmentalvariablesandcriticalperiodstoevaluateheattoleranceinlargewhitepigsbasedonsinglestepgenomicreactionnorms |
_version_ |
1718406600917516288 |