PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics

Abstract Microbial electrochemical systems provide an environmentally-friendly means of energy conversion between chemical and electrical forms, with applications in wastewater treatment, bioelectronics, and biosensing. However, a major challenge to further development, miniaturization, and deployme...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tom J. Zajdel, Moshe Baruch, Gábor Méhes, Eleni Stavrinidou, Magnus Berggren, Michel M. Maharbiz, Daniel T. Simon, Caroline M. Ajo-Franklin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f6602354c3104a48bbe0e15119be24e6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f6602354c3104a48bbe0e15119be24e6
record_format dspace
spelling oai:doaj.org-article:f6602354c3104a48bbe0e15119be24e62021-12-02T15:08:17ZPEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics10.1038/s41598-018-33521-92045-2322https://doaj.org/article/f6602354c3104a48bbe0e15119be24e62018-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-33521-9https://doaj.org/toc/2045-2322Abstract Microbial electrochemical systems provide an environmentally-friendly means of energy conversion between chemical and electrical forms, with applications in wastewater treatment, bioelectronics, and biosensing. However, a major challenge to further development, miniaturization, and deployment of bioelectronics and biosensors is the limited thickness of biofilms, necessitating large anodes to achieve sufficient signal-to-noise ratios. Here we demonstrate a method for embedding an electroactive bacterium, Shewanella oneidensis MR-1, inside a conductive three-dimensional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix electropolymerized on a carbon felt substrate, which we call a multilayer conductive bacterial-composite film (MCBF). By mixing the bacteria with the PEDOT:PSS precursor in a flow-through method, we maintain over 90% viability of S. oneidensis during encapsulation. Microscopic analysis of the MCBFs reveal a tightly interleaved structure of bacteria and conductive PEDOT:PSS up to 80 µm thick. Electrochemical experiments indicate S. oneidensis in MCBFs can perform both direct and riboflavin-mediated electron transfer to PEDOT:PSS. When used in bioelectrochemical reactors, the MCBFs produce 20 times more steady-state current than native biofilms grown on unmodified carbon felt. This versatile approach to control the thickness of bacterial composite films and increase their current output has immediate applications in microbial electrochemical systems, including field-deployable environmental sensing and direct integration of microorganisms into miniaturized organic electronics.Tom J. ZajdelMoshe BaruchGábor MéhesEleni StavrinidouMagnus BerggrenMichel M. MaharbizDaniel T. SimonCaroline M. Ajo-FranklinNature PortfolioarticleMicrobial Electrochemical Systems (MESs)OneidensisElectroactive BacteriaNatural BiofilmsCarbon FiberMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-12 (2018)
institution DOAJ
collection DOAJ
language EN
topic Microbial Electrochemical Systems (MESs)
Oneidensis
Electroactive Bacteria
Natural Biofilms
Carbon Fiber
Medicine
R
Science
Q
spellingShingle Microbial Electrochemical Systems (MESs)
Oneidensis
Electroactive Bacteria
Natural Biofilms
Carbon Fiber
Medicine
R
Science
Q
Tom J. Zajdel
Moshe Baruch
Gábor Méhes
Eleni Stavrinidou
Magnus Berggren
Michel M. Maharbiz
Daniel T. Simon
Caroline M. Ajo-Franklin
PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics
description Abstract Microbial electrochemical systems provide an environmentally-friendly means of energy conversion between chemical and electrical forms, with applications in wastewater treatment, bioelectronics, and biosensing. However, a major challenge to further development, miniaturization, and deployment of bioelectronics and biosensors is the limited thickness of biofilms, necessitating large anodes to achieve sufficient signal-to-noise ratios. Here we demonstrate a method for embedding an electroactive bacterium, Shewanella oneidensis MR-1, inside a conductive three-dimensional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix electropolymerized on a carbon felt substrate, which we call a multilayer conductive bacterial-composite film (MCBF). By mixing the bacteria with the PEDOT:PSS precursor in a flow-through method, we maintain over 90% viability of S. oneidensis during encapsulation. Microscopic analysis of the MCBFs reveal a tightly interleaved structure of bacteria and conductive PEDOT:PSS up to 80 µm thick. Electrochemical experiments indicate S. oneidensis in MCBFs can perform both direct and riboflavin-mediated electron transfer to PEDOT:PSS. When used in bioelectrochemical reactors, the MCBFs produce 20 times more steady-state current than native biofilms grown on unmodified carbon felt. This versatile approach to control the thickness of bacterial composite films and increase their current output has immediate applications in microbial electrochemical systems, including field-deployable environmental sensing and direct integration of microorganisms into miniaturized organic electronics.
format article
author Tom J. Zajdel
Moshe Baruch
Gábor Méhes
Eleni Stavrinidou
Magnus Berggren
Michel M. Maharbiz
Daniel T. Simon
Caroline M. Ajo-Franklin
author_facet Tom J. Zajdel
Moshe Baruch
Gábor Méhes
Eleni Stavrinidou
Magnus Berggren
Michel M. Maharbiz
Daniel T. Simon
Caroline M. Ajo-Franklin
author_sort Tom J. Zajdel
title PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics
title_short PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics
title_full PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics
title_fullStr PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics
title_full_unstemmed PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics
title_sort pedot:pss-based multilayer bacterial-composite films for bioelectronics
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/f6602354c3104a48bbe0e15119be24e6
work_keys_str_mv AT tomjzajdel pedotpssbasedmultilayerbacterialcompositefilmsforbioelectronics
AT moshebaruch pedotpssbasedmultilayerbacterialcompositefilmsforbioelectronics
AT gabormehes pedotpssbasedmultilayerbacterialcompositefilmsforbioelectronics
AT elenistavrinidou pedotpssbasedmultilayerbacterialcompositefilmsforbioelectronics
AT magnusberggren pedotpssbasedmultilayerbacterialcompositefilmsforbioelectronics
AT michelmmaharbiz pedotpssbasedmultilayerbacterialcompositefilmsforbioelectronics
AT danieltsimon pedotpssbasedmultilayerbacterialcompositefilmsforbioelectronics
AT carolinemajofranklin pedotpssbasedmultilayerbacterialcompositefilmsforbioelectronics
_version_ 1718388228602462208