Rotational-invariant speckle-scanning ultrasonography through thick bones
Abstract Ultrasonography is a major medical imaging technique that has been broadly applied in many disease diagnoses. However, due to strong aberration and scattering in the human skull, high-resolution transcranial ultrasonic imaging remains a grand challenge. Here, we explore the rotational-invar...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f66740346fb44260bf396b85f3a030d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f66740346fb44260bf396b85f3a030d5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f66740346fb44260bf396b85f3a030d52021-12-02T15:22:57ZRotational-invariant speckle-scanning ultrasonography through thick bones10.1038/s41598-021-93488-y2045-2322https://doaj.org/article/f66740346fb44260bf396b85f3a030d52021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93488-yhttps://doaj.org/toc/2045-2322Abstract Ultrasonography is a major medical imaging technique that has been broadly applied in many disease diagnoses. However, due to strong aberration and scattering in the human skull, high-resolution transcranial ultrasonic imaging remains a grand challenge. Here, we explore the rotational-invariant property of ultrasonic speckle and develop high-resolution speckle-scanning ultrasonography to image sub-millimeter-sized features through thick bones. We experimentally validate the rotational invariance of ultrasonic speckle. Based on this property, we scan a random ultrasonic speckle pattern across an object sandwiched between two thick bones so that the object features can be encoded to the ultrasonic waves. After receiving the transmitted ultrasonic waves, we reconstruct the image of the object using an iterative phase retrieval algorithm. We successfully demonstrate imaging of hole and tube features sized as fine as several hundreds of microns between two 0.5 ~ 1-cm-thick bones. With 2.5-MHz excitation and the third-harmonic detection, we measure the spatial resolution as 352 µm. Rotational-invariant speckle-scanning ultrasonography offers a new approach to image through thick bones and paves an avenue towards high-resolution ultrasonic imaging of the human brain.Siyi LiangLidai WangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-6 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Siyi Liang Lidai Wang Rotational-invariant speckle-scanning ultrasonography through thick bones |
description |
Abstract Ultrasonography is a major medical imaging technique that has been broadly applied in many disease diagnoses. However, due to strong aberration and scattering in the human skull, high-resolution transcranial ultrasonic imaging remains a grand challenge. Here, we explore the rotational-invariant property of ultrasonic speckle and develop high-resolution speckle-scanning ultrasonography to image sub-millimeter-sized features through thick bones. We experimentally validate the rotational invariance of ultrasonic speckle. Based on this property, we scan a random ultrasonic speckle pattern across an object sandwiched between two thick bones so that the object features can be encoded to the ultrasonic waves. After receiving the transmitted ultrasonic waves, we reconstruct the image of the object using an iterative phase retrieval algorithm. We successfully demonstrate imaging of hole and tube features sized as fine as several hundreds of microns between two 0.5 ~ 1-cm-thick bones. With 2.5-MHz excitation and the third-harmonic detection, we measure the spatial resolution as 352 µm. Rotational-invariant speckle-scanning ultrasonography offers a new approach to image through thick bones and paves an avenue towards high-resolution ultrasonic imaging of the human brain. |
format |
article |
author |
Siyi Liang Lidai Wang |
author_facet |
Siyi Liang Lidai Wang |
author_sort |
Siyi Liang |
title |
Rotational-invariant speckle-scanning ultrasonography through thick bones |
title_short |
Rotational-invariant speckle-scanning ultrasonography through thick bones |
title_full |
Rotational-invariant speckle-scanning ultrasonography through thick bones |
title_fullStr |
Rotational-invariant speckle-scanning ultrasonography through thick bones |
title_full_unstemmed |
Rotational-invariant speckle-scanning ultrasonography through thick bones |
title_sort |
rotational-invariant speckle-scanning ultrasonography through thick bones |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f66740346fb44260bf396b85f3a030d5 |
work_keys_str_mv |
AT siyiliang rotationalinvariantspecklescanningultrasonographythroughthickbones AT lidaiwang rotationalinvariantspecklescanningultrasonographythroughthickbones |
_version_ |
1718387406808285184 |