On Leaf BRDF Estimates and Their Fit to Microfacet Models
Remote sensing provides high accuracy/precision for quantifying forest biophysical parameters needed for ecological management. Although the significant impact of bidirectional scattering distribution functions (BSDFs) on remote sensing of vegetation is well known, current forest metrics derived fro...
Guardado en:
Autores principales: | Benjamin D. Roth, Michael Grady Saunders, Charles M. Bachmann, Jan Andreas van Aardt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f66c74d138754cf0b4cc311f77c1be39 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
por: Lulu Wan, et al.
Publicado: (2021) -
Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
por: Bing Liu, et al.
Publicado: (2021) -
Joint Estimation of Leaf Area Density and Leaf Angle Distribution Using TLS Point Cloud for Forest Stands
por: Ameni Mkaouar, et al.
Publicado: (2021) -
Evaluation of Surface Melt on the Greenland Ice Sheet Using SMAP <italic>L</italic>-Band Microwave Radiometry
por: Mohammad Mousavi, et al.
Publicado: (2021) -
Constrained Nonnegative Matrix Factorization for Blind Hyperspectral Unmixing Incorporating Endmember Independence
por: E. M. M. B. Ekanayake, et al.
Publicado: (2021)