Comparison of the Wiener and Kirchhoff Indices of Random Pentachains

Let G be a connected (molecule) graph. The Wiener index WG and Kirchhoff index KfG of G are defined as the sum of distances and the resistance distances between all unordered pairs of vertices in G, respectively. In this paper, explicit formulae for the expected values of the Wiener and Kirchhoff in...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Shouliu Wei, Wai Chee Shiu, Xiaoling Ke, Jianwu Huang
Format: article
Langue:EN
Publié: Hindawi Limited 2021
Sujets:
Accès en ligne:https://doaj.org/article/f696d77cec6541caa9fe90ca89ab982b
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
id oai:doaj.org-article:f696d77cec6541caa9fe90ca89ab982b
record_format dspace
spelling oai:doaj.org-article:f696d77cec6541caa9fe90ca89ab982b2021-11-08T02:35:48ZComparison of the Wiener and Kirchhoff Indices of Random Pentachains2314-478510.1155/2021/7523214https://doaj.org/article/f696d77cec6541caa9fe90ca89ab982b2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/7523214https://doaj.org/toc/2314-4785Let G be a connected (molecule) graph. The Wiener index WG and Kirchhoff index KfG of G are defined as the sum of distances and the resistance distances between all unordered pairs of vertices in G, respectively. In this paper, explicit formulae for the expected values of the Wiener and Kirchhoff indices of random pentachains are derived by the difference equation and recursive method. Based on these formulae, we then make comparisons between the expected values of the Wiener index and the Kirchhoff index in random pentachains and present the average values of the Wiener and Kirchhoff indices with respect to the set of all random pentachains with n pentagons.Shouliu WeiWai Chee ShiuXiaoling KeJianwu HuangHindawi LimitedarticleMathematicsQA1-939ENJournal of Mathematics, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Mathematics
QA1-939
spellingShingle Mathematics
QA1-939
Shouliu Wei
Wai Chee Shiu
Xiaoling Ke
Jianwu Huang
Comparison of the Wiener and Kirchhoff Indices of Random Pentachains
description Let G be a connected (molecule) graph. The Wiener index WG and Kirchhoff index KfG of G are defined as the sum of distances and the resistance distances between all unordered pairs of vertices in G, respectively. In this paper, explicit formulae for the expected values of the Wiener and Kirchhoff indices of random pentachains are derived by the difference equation and recursive method. Based on these formulae, we then make comparisons between the expected values of the Wiener index and the Kirchhoff index in random pentachains and present the average values of the Wiener and Kirchhoff indices with respect to the set of all random pentachains with n pentagons.
format article
author Shouliu Wei
Wai Chee Shiu
Xiaoling Ke
Jianwu Huang
author_facet Shouliu Wei
Wai Chee Shiu
Xiaoling Ke
Jianwu Huang
author_sort Shouliu Wei
title Comparison of the Wiener and Kirchhoff Indices of Random Pentachains
title_short Comparison of the Wiener and Kirchhoff Indices of Random Pentachains
title_full Comparison of the Wiener and Kirchhoff Indices of Random Pentachains
title_fullStr Comparison of the Wiener and Kirchhoff Indices of Random Pentachains
title_full_unstemmed Comparison of the Wiener and Kirchhoff Indices of Random Pentachains
title_sort comparison of the wiener and kirchhoff indices of random pentachains
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/f696d77cec6541caa9fe90ca89ab982b
work_keys_str_mv AT shouliuwei comparisonofthewienerandkirchhoffindicesofrandompentachains
AT waicheeshiu comparisonofthewienerandkirchhoffindicesofrandompentachains
AT xiaolingke comparisonofthewienerandkirchhoffindicesofrandompentachains
AT jianwuhuang comparisonofthewienerandkirchhoffindicesofrandompentachains
_version_ 1718443247930441728