Comparison of the Wiener and Kirchhoff Indices of Random Pentachains
Let G be a connected (molecule) graph. The Wiener index WG and Kirchhoff index KfG of G are defined as the sum of distances and the resistance distances between all unordered pairs of vertices in G, respectively. In this paper, explicit formulae for the expected values of the Wiener and Kirchhoff in...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f696d77cec6541caa9fe90ca89ab982b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f696d77cec6541caa9fe90ca89ab982b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f696d77cec6541caa9fe90ca89ab982b2021-11-08T02:35:48ZComparison of the Wiener and Kirchhoff Indices of Random Pentachains2314-478510.1155/2021/7523214https://doaj.org/article/f696d77cec6541caa9fe90ca89ab982b2021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/7523214https://doaj.org/toc/2314-4785Let G be a connected (molecule) graph. The Wiener index WG and Kirchhoff index KfG of G are defined as the sum of distances and the resistance distances between all unordered pairs of vertices in G, respectively. In this paper, explicit formulae for the expected values of the Wiener and Kirchhoff indices of random pentachains are derived by the difference equation and recursive method. Based on these formulae, we then make comparisons between the expected values of the Wiener index and the Kirchhoff index in random pentachains and present the average values of the Wiener and Kirchhoff indices with respect to the set of all random pentachains with n pentagons.Shouliu WeiWai Chee ShiuXiaoling KeJianwu HuangHindawi LimitedarticleMathematicsQA1-939ENJournal of Mathematics, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Mathematics QA1-939 |
spellingShingle |
Mathematics QA1-939 Shouliu Wei Wai Chee Shiu Xiaoling Ke Jianwu Huang Comparison of the Wiener and Kirchhoff Indices of Random Pentachains |
description |
Let G be a connected (molecule) graph. The Wiener index WG and Kirchhoff index KfG of G are defined as the sum of distances and the resistance distances between all unordered pairs of vertices in G, respectively. In this paper, explicit formulae for the expected values of the Wiener and Kirchhoff indices of random pentachains are derived by the difference equation and recursive method. Based on these formulae, we then make comparisons between the expected values of the Wiener index and the Kirchhoff index in random pentachains and present the average values of the Wiener and Kirchhoff indices with respect to the set of all random pentachains with n pentagons. |
format |
article |
author |
Shouliu Wei Wai Chee Shiu Xiaoling Ke Jianwu Huang |
author_facet |
Shouliu Wei Wai Chee Shiu Xiaoling Ke Jianwu Huang |
author_sort |
Shouliu Wei |
title |
Comparison of the Wiener and Kirchhoff Indices of Random Pentachains |
title_short |
Comparison of the Wiener and Kirchhoff Indices of Random Pentachains |
title_full |
Comparison of the Wiener and Kirchhoff Indices of Random Pentachains |
title_fullStr |
Comparison of the Wiener and Kirchhoff Indices of Random Pentachains |
title_full_unstemmed |
Comparison of the Wiener and Kirchhoff Indices of Random Pentachains |
title_sort |
comparison of the wiener and kirchhoff indices of random pentachains |
publisher |
Hindawi Limited |
publishDate |
2021 |
url |
https://doaj.org/article/f696d77cec6541caa9fe90ca89ab982b |
work_keys_str_mv |
AT shouliuwei comparisonofthewienerandkirchhoffindicesofrandompentachains AT waicheeshiu comparisonofthewienerandkirchhoffindicesofrandompentachains AT xiaolingke comparisonofthewienerandkirchhoffindicesofrandompentachains AT jianwuhuang comparisonofthewienerandkirchhoffindicesofrandompentachains |
_version_ |
1718443247930441728 |