Comparison of the Wiener and Kirchhoff Indices of Random Pentachains
Let G be a connected (molecule) graph. The Wiener index WG and Kirchhoff index KfG of G are defined as the sum of distances and the resistance distances between all unordered pairs of vertices in G, respectively. In this paper, explicit formulae for the expected values of the Wiener and Kirchhoff in...
Guardado en:
Autores principales: | Shouliu Wei, Wai Chee Shiu, Xiaoling Ke, Jianwu Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f696d77cec6541caa9fe90ca89ab982b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On initial inverse problem for nonlinear couple heat with Kirchhoff type
por: Danh Hua Quoc Nam
Publicado: (2021) -
Basic Fundamental Formulas for Wiener Transforms Associated with a Pair of Operators on Hilbert Space
por: Hyun Soo Chung
Publicado: (2021) -
The Largest Component of Near-Critical Random Intersection Graph with Tunable Clustering
por: Shiying Huang, et al.
Publicado: (2021) -
Topological Indices of Pent-Heptagonal Nanosheets via M-Polynomials
por: Hafiza Bushra Mumtaz, et al.
Publicado: (2021) -
On Computation of Edge Degree-Based Banhatti Indices of a Certain Molecular Network
por: Jiang-Hua Tang, et al.
Publicado: (2021)