An empirical survey of data augmentation for time series classification with neural networks.
In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of add...
Guardado en:
Autores principales: | Brian Kenji Iwana, Seiichi Uchida |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f69abd8bbc574c12a7b980e739932adf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks
por: Taesung Kim, et al.
Publicado: (2021) -
A hybrid deep neural network for classification of schizophrenia using EEG Data
por: Jie Sun, et al.
Publicado: (2021) -
Generative adversarial network based on chaotic time series
por: Makoto Naruse, et al.
Publicado: (2019) -
Taming the Chaos in Neural Network Time Series Predictions
por: Sebastian Raubitzek, et al.
Publicado: (2021) -
Discriminating chaotic and stochastic time series using permutation entropy and artificial neural networks
por: B. R. R. Boaretto, et al.
Publicado: (2021)