Design and bio-inspired optimization of direct contact membrane distillation for desalination based on constructal law
Abstract At the present study, a one-dimensional model for the flat sheet direct contact membrane distillation (DCMD) for desalination purposes is proposed. Flows and membrane properties have been estimated by appropriate temperature-dependent correlations. Results show that the numerical model is i...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f69e17eb0a9d4676aced4bef57521bda |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract At the present study, a one-dimensional model for the flat sheet direct contact membrane distillation (DCMD) for desalination purposes is proposed. Flows and membrane properties have been estimated by appropriate temperature-dependent correlations. Results show that the numerical model is in a very good agreement with experimental data at various feed temperatures, flow rates and concentrations. A constructal design is investigated for DCMD to assess how constructal law can improve the DCMD performance. With the same thermal efficiency of 93.5%, constructal design improves the water mass flux by 37.5% in comparison with the conventional DCMD design. Also, an evolutionary-based optimization algorithm is employed to increase the efficiency of the constructal and conventional design. The Pareto frontier of the constructal and conventional design is compared with each other and the correlations between design variables are investigated. Overall, the present study demonstrates how constructal law can increase the performance of energy systems with a simple modification. |
---|