Rapid Bayesian learning in the mammalian olfactory system

How can rodents make sense of the olfactory environment without supervision? Here, the authors formulate olfactory learning as an integrated Bayesian inference problem, then derive a set of synaptic plasticity rules and neural dynamics that enables near-optimal learning of odor identification.

Guardado en:
Detalles Bibliográficos
Autores principales: Naoki Hiratani, Peter E. Latham
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/f6df5da2e76146c792e6313cc3b56b26
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:How can rodents make sense of the olfactory environment without supervision? Here, the authors formulate olfactory learning as an integrated Bayesian inference problem, then derive a set of synaptic plasticity rules and neural dynamics that enables near-optimal learning of odor identification.