Rapid Bayesian learning in the mammalian olfactory system

How can rodents make sense of the olfactory environment without supervision? Here, the authors formulate olfactory learning as an integrated Bayesian inference problem, then derive a set of synaptic plasticity rules and neural dynamics that enables near-optimal learning of odor identification.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Naoki Hiratani, Peter E. Latham
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/f6df5da2e76146c792e6313cc3b56b26
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:How can rodents make sense of the olfactory environment without supervision? Here, the authors formulate olfactory learning as an integrated Bayesian inference problem, then derive a set of synaptic plasticity rules and neural dynamics that enables near-optimal learning of odor identification.