Rapid Bayesian learning in the mammalian olfactory system
How can rodents make sense of the olfactory environment without supervision? Here, the authors formulate olfactory learning as an integrated Bayesian inference problem, then derive a set of synaptic plasticity rules and neural dynamics that enables near-optimal learning of odor identification.
Guardado en:
Autores principales: | Naoki Hiratani, Peter E. Latham |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f6df5da2e76146c792e6313cc3b56b26 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mixture interactions at mammalian olfactory receptors are dependent on the cellular environment
por: Elizabeth A. Corey, et al.
Publicado: (2021) -
Rapid and continuous activity-dependent plasticity of olfactory sensory input
por: Claire E. J. Cheetham, et al.
Publicado: (2016) -
Predictive olfactory learning in Drosophila
por: Chang Zhao, et al.
Publicado: (2021) -
Rapid adaptation to microgravity in mammalian macrophage cells
por: Cora S. Thiel, et al.
Publicado: (2017) -
Screening of COVID-19 cases through a Bayesian network symptoms model and psychophysical olfactory test
por: Susana Eyheramendy, et al.
Publicado: (2021)