Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
The current trend in modern research revolves around novel techniques that can predict the characteristics of materials without consuming time, effort, and experimental costs. The adaptation of machine learning techniques to compute the various properties of materials is gaining more attention. This...
Guardado en:
Autores principales: | Yue Xu, Waqas Ahmad, Ayaz Ahmad, Krzysztof Adam Ostrowski, Marta Dudek, Fahid Aslam, Panuwat Joyklad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f6e3885292c4461e8017c7ae12b9a985 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting High-Risk Groups for COVID-19 Anxiety Using AdaBoost and Nomogram: Findings from Nationwide Survey in South Korea
por: Haewon Byeon
Publicado: (2021) -
Classification of UNSW-NB15 dataset using Exploratory Data Analysis using Ensemble Learning
por: Neha Sharma, et al.
Publicado: (2021) -
Application of bagging ensemble model for predicting compressive strength of hollow concrete masonry prism
por: Ahmad Sharafati, et al.
Publicado: (2021) -
Self-Fibers Compacting Concrete Properties Reinforced with Propylene Fibers
por: Ahmad Jawad, et al.
Publicado: (2021) -
Investigating the effect of the ultra-high absorbent polymer on the sealing property of concrete
por: Moayyad Al-Nasra
Publicado: (2019)