Synthesis-free PET imaging of brown adipose tissue and TSPO via combination of disulfiram and 64CuCl2

Abstract PET imaging is a widely applicable but a very expensive technology. On-site synthesis is one important contributor to the high cost. In this report, we demonstrated the feasibility of a synthesis-free method for PET imaging of brown adipose tissue (BAT) and translocator protein 18 kDa (TSPO...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jing Yang, Jian Yang, Lu Wang, Anna Moore, Steven H. Liang, Chongzhao Ran
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f6ec5eb5636649328d92c44b810d4366
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract PET imaging is a widely applicable but a very expensive technology. On-site synthesis is one important contributor to the high cost. In this report, we demonstrated the feasibility of a synthesis-free method for PET imaging of brown adipose tissue (BAT) and translocator protein 18 kDa (TSPO) via a combination of disulfiram, an FDA approved drug for alcoholism, and 64CuCl2 (termed 64Cu-Dis). In this method, a step-wise injection protocol of 64CuCl2 and disulfiram was used to accomplish the purpose of synthesis-free. Specifically, disulfiram, an inactive 64Cu ligand, was first injected to allow it to metabolize into diethyldithiocarbamate (DDC), a strong 64Cu ligand, which can chelate 64CuCl2 from the following injection to form the actual PET tracer in situ. Our blocking studies, western blot, and tissue histological imaging suggested that the observed BAT contrast was due to 64Cu-Dis binding to TSPO, which was further confirmed as a specific biomarker for BAT imaging using [18F]-F-DPA, a TSPO-specific PET tracer. Our studies, for the first time, demonstrated that TSPO could serve as a potential imaging biomarker for BAT. We believe that our strategy could be extended to other targets while significantly reducing the cost of PET imaging.