Capacity of Vehicular Ad Hoc Networks Based on Multibeam Directional Transmission

The development of multibeam directional transmission technology used in vehicular ad hoc networks is drawing much more attention in recent years due to its wider coverage ability than omnidirectional transmission. In this paper, we analyse the transport capacity of the vehicular network using diffe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yuhua Wang, Laixian Peng, Renhui Xu
Formato: article
Lenguaje:EN
Publicado: Hindawi-Wiley 2021
Materias:
T
Acceso en línea:https://doaj.org/article/f6f012c8f0a044d1a4527905d66f8d8d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The development of multibeam directional transmission technology used in vehicular ad hoc networks is drawing much more attention in recent years due to its wider coverage ability than omnidirectional transmission. In this paper, we analyse the transport capacity of the vehicular network using different antenna modes in the transmitter and receiver end, respectively. We first construct the cross-layer model comprising the characteristic of the directional antenna model, arbitrary network model, and interference model. Then, based on scaling laws, we calculate the upper and lower bound of the network capacity with and without the directional multibeam transmission technology. In order to reduce the capacity lower bound computation complexity, several topology frameworks are constructed while taking various interferences into account included in the actual project. Finally, we analyse the capacity under changes of different parameters and also evaluate the law of capacity changes to discover how much improvement multibeam transmission technology can bring to the network performance. Analysis shows that compared with DTOR and OTDR mode, DTDR mode can continue to increase network capacity by 2 to 3 times on the basis of the above two modes.