Real-time multi-task diffractive deep neural networks via hardware-software co-design
Abstract Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs hardware, which bring significant advantage...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f70eb5ef627d42bea283df2da64a8c8e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f70eb5ef627d42bea283df2da64a8c8e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f70eb5ef627d42bea283df2da64a8c8e2021-12-02T15:00:40ZReal-time multi-task diffractive deep neural networks via hardware-software co-design10.1038/s41598-021-90221-72045-2322https://doaj.org/article/f70eb5ef627d42bea283df2da64a8c8e2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90221-7https://doaj.org/toc/2045-2322Abstract Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs hardware, which bring significant advantages for deep learning systems in terms of their power efficiency, parallelism and computational speed. Among them, free-space diffractive deep neural networks (D2NNs) based on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring layers. However, due to the challenge of implementing reconfigurability, deploying different DNNs algorithms requires re-building and duplicating the physical diffractive systems, which significantly degrades the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-software co-design method that enables first-of-its-like real-time multi-task learning in D22NNs that automatically recognizes which task is being deployed in real-time. Our experimental results demonstrate significant improvements in versatility, hardware efficiency, and also demonstrate and quantify the robustness of proposed multi-task D2NN architecture under wide noise ranges of all system components. In addition, we propose a domain-specific regularization algorithm for training the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for each task.Yingjie LiRuiyang ChenBerardi Sensale-RodriguezWeilu GaoCunxi YuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yingjie Li Ruiyang Chen Berardi Sensale-Rodriguez Weilu Gao Cunxi Yu Real-time multi-task diffractive deep neural networks via hardware-software co-design |
description |
Abstract Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs hardware, which bring significant advantages for deep learning systems in terms of their power efficiency, parallelism and computational speed. Among them, free-space diffractive deep neural networks (D2NNs) based on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring layers. However, due to the challenge of implementing reconfigurability, deploying different DNNs algorithms requires re-building and duplicating the physical diffractive systems, which significantly degrades the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-software co-design method that enables first-of-its-like real-time multi-task learning in D22NNs that automatically recognizes which task is being deployed in real-time. Our experimental results demonstrate significant improvements in versatility, hardware efficiency, and also demonstrate and quantify the robustness of proposed multi-task D2NN architecture under wide noise ranges of all system components. In addition, we propose a domain-specific regularization algorithm for training the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for each task. |
format |
article |
author |
Yingjie Li Ruiyang Chen Berardi Sensale-Rodriguez Weilu Gao Cunxi Yu |
author_facet |
Yingjie Li Ruiyang Chen Berardi Sensale-Rodriguez Weilu Gao Cunxi Yu |
author_sort |
Yingjie Li |
title |
Real-time multi-task diffractive deep neural networks via hardware-software co-design |
title_short |
Real-time multi-task diffractive deep neural networks via hardware-software co-design |
title_full |
Real-time multi-task diffractive deep neural networks via hardware-software co-design |
title_fullStr |
Real-time multi-task diffractive deep neural networks via hardware-software co-design |
title_full_unstemmed |
Real-time multi-task diffractive deep neural networks via hardware-software co-design |
title_sort |
real-time multi-task diffractive deep neural networks via hardware-software co-design |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f70eb5ef627d42bea283df2da64a8c8e |
work_keys_str_mv |
AT yingjieli realtimemultitaskdiffractivedeepneuralnetworksviahardwaresoftwarecodesign AT ruiyangchen realtimemultitaskdiffractivedeepneuralnetworksviahardwaresoftwarecodesign AT berardisensalerodriguez realtimemultitaskdiffractivedeepneuralnetworksviahardwaresoftwarecodesign AT weilugao realtimemultitaskdiffractivedeepneuralnetworksviahardwaresoftwarecodesign AT cunxiyu realtimemultitaskdiffractivedeepneuralnetworksviahardwaresoftwarecodesign |
_version_ |
1718389176145018880 |