Real-time multi-task diffractive deep neural networks via hardware-software co-design
Abstract Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs hardware, which bring significant advantage...
Guardado en:
Autores principales: | Yingjie Li, Ruiyang Chen, Berardi Sensale-Rodriguez, Weilu Gao, Cunxi Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f70eb5ef627d42bea283df2da64a8c8e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A deep convolutional neural network for real-time full profile analysis of big powder diffraction data
por: Hongyang Dong, et al.
Publicado: (2021) -
Software and Hardware Cooperative Acceleration Technology for CNN
por: Li Xinyao, Liu Feiyang, Wen Pengcheng, Li Peng
Publicado: (2021) -
Sparse and dense matrix multiplication hardware for heterogeneous multi-precision neural networks
por: Jose Nunez-Yanez, et al.
Publicado: (2021) -
Hardware/Software Co-Design for TinyML Voice-Recognition Application on Resource Frugal Edge Devices
por: Jisu Kwon, et al.
Publicado: (2021) -
Reduction of the error in the hardware neural network
por: Dhafer r. Zaghar
Publicado: (2007)