Data-Driven Kalman Filtering in Nonlinear Systems with Actuator and Sensor Fault Diagnosis Based on Lyapunov Stability
This study proposes a data-driven adaptive filtering method for the fault diagnosis (DDAF-FD) of discrete-time nonlinear systems and provides a simultaneous online estimation of actuator and sensor faults. First, dynamic linearization was adopted to transform the nonlinear system into a quasi-linear...
Guardado en:
Autores principales: | Lingling Fan, Kaipu Guo, Honghai Ji, Shida Liu, Yuzhou Wei |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f7112f50248744bc86042a8e5cbd84af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Three-Phase State Estimation of a Low-Voltage Distribution Network with Kalman Filter
por: Fabio Napolitano, et al.
Publicado: (2021) -
Iterative Self-Tuning Minimum Variance Control of a Nonlinear Autonomous Underwater Vehicle Maneuvering Model
por: Maria Tomas-Rodríguez, et al.
Publicado: (2021) -
Single Fault Diagnosis Method of Sensors in Cascade System Based on Data-Driven
por: Wenbo Na, et al.
Publicado: (2021) -
A Novel Adaptive Cruise Control Strategy for Electric Vehicles Based on a Hierarchical Framework
por: Yanwu Xu, et al.
Publicado: (2021) -
A local binary patterns/variance operator based on guided filtering for seismic fault detection
por: Renfei Tian, et al.
Publicado: (2021)