Intracellular prostaglandin E2 contributes to hypoxia-induced proximal tubular cell death
Abstract Proximal tubular cells (PTC) are particularly vulnerable to hypoxia-induced apoptosis, a relevant factor for kidney disease. We hypothesized here that PTC death under hypoxia is mediated by cyclo-oxygenase (COX-2)-dependent production of prostaglandin E2 (PGE2), which was confirmed in human...
        Saved in:
      
    
                  | Main Authors: | , , , , | 
|---|---|
| Format: | article | 
| Language: | EN | 
| Published: | 
        
      Nature Portfolio    
    
      2021
     | 
| Subjects: | |
| Online Access: | https://doaj.org/article/f711417c43074f3f8a7eb7b6f2956e11 | 
| Tags: | 
       Add Tag    
     
      No Tags, Be the first to tag this record!
   
 | 
| Summary: | Abstract Proximal tubular cells (PTC) are particularly vulnerable to hypoxia-induced apoptosis, a relevant factor for kidney disease. We hypothesized here that PTC death under hypoxia is mediated by cyclo-oxygenase (COX-2)-dependent production of prostaglandin E2 (PGE2), which was confirmed in human proximal tubular HK-2 cells because hypoxia (1% O2)-induced apoptosis (i) was prevented by a COX-2 inhibitor and by antagonists of prostaglandin (EP) receptors and (ii) was associated to an increase in intracellular PGE2 (iPGE2) due to hypoxia-inducible factor-1α-dependent transcriptional up-regulation of COX-2. Apoptosis was also prevented by inhibitors of the prostaglandin uptake transporter PGT, which indicated that iPGE2 contributes to hypoxia-induced apoptosis (on the contrary, hypoxia/reoxygenation-induced PTC death was exclusively due to extracellular PGE2). Thus, iPGE2 is a new actor in the pathogenesis of hypoxia-induced tubular injury and PGT might be a new therapeutic target for the prevention of hypoxia-dependent lesions in renal diseases. | 
|---|